山東省青島市2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
山東省青島市2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
山東省青島市2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
山東省青島市2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
山東省青島市2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

山東省青島市2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若拋物線的焦點為,則其標(biāo)準(zhǔn)方程為()A. B.C. D.2.?dāng)?shù)列滿足,且,則的值為()A.2 B.1C. D.-13.直線過點且與雙曲線僅有一個公共點,則這樣的直線有()A.1條 B.2條C.3條 D.4條4.已知數(shù)列的通項公式為,按項的變化趨勢,該數(shù)列是()A.遞增數(shù)列 B.遞減數(shù)列C.擺動數(shù)列 D.常數(shù)列5.已知直線與圓交于A,B兩點,O為原點,且,則實數(shù)m等于()A. B.C. D.6.已知,則下列說法中一定正確的是()A. B.C. D.7.已知函數(shù),.若存在三個零點,則實數(shù)的取值范圍是()A. B.C. D.8.已知數(shù)列的通項公式為,則()A.12 B.14C.16 D.189.在等差數(shù)列中,已知,,則使數(shù)列的前n項和成立時n的最小值為()A.6 B.7C.9 D.1010.如圖,已知二面角平面角的大小為,其棱上有、兩點,、分別在這個二面角的兩個半平面內(nèi),且都與垂直.已知,,則()A. B.C. D.11.下列拋物線中,以點為焦點的是()A. B.C. D.12.觀察:則第行的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點在直線上,則的最小值為___________.14.已知函數(shù),則________15.若正實數(shù)滿足則的最小值為________________________16.已知雙曲線的焦點,過F且斜率為1的直線與雙曲線有且只有一個交點,則雙曲線的方程為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓F:經(jīng)過點且離心率為,直線和是分別過橢圓F的左、右焦點的兩條動直線,它們與橢圓分別相交于點A、B和C、D,O為坐標(biāo)原點,直線AB和直線CD相交于M.記直線的斜率分別為,且(1)求橢圓F的標(biāo)準(zhǔn)方程(2)是否存在定點P,Q,使得為定值.若存在,請求出P、Q的坐標(biāo),若不存在,請說明理由18.(12分)已知點,圓,點Q在圓上運動,的垂直平分線交于點P.(1)求動點P的軌跡的方程;(2)過點的動直線l交曲線C于A、B兩點,在y軸上是否存在定點T,使以AB為直徑的圓恒過這個點?若存在,求出點T的坐標(biāo),若不存在,請說明理由.19.(12分)某市對新形勢下的中考改革工作進行了全面的部署安排.中考錄取科目設(shè)置分為固定賦分科目和非固定賦分科目,固定賦分科目(語文、數(shù)學(xué)、英語、物理、體育與健康)按卷面分計算;非固定賦分科目(化學(xué)、生物、道德與法治、歷史、地理)按學(xué)生在該學(xué)科中的排名進行等級賦分,即根據(jù)改革方案,將每門等級考試科目中考生的原始成績從高到低分為A,,,,,,,共個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為,,,,,,,.等級考試科目成績計入考生總成績時,將A至等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到,,,,,,,八個分?jǐn)?shù)區(qū)間,得到考生的等級成績.該市學(xué)生的中考化學(xué)原始成績制成頻率分布直方圖如圖所示:(1)求圖中的值;(2)估計該市學(xué)生中考化學(xué)原始成績不少于多少分才能達到等級及以上(含等級)?(3)由于中考改革后學(xué)生各科原始成績不再返回學(xué)校,只告知各校參考學(xué)生的各科平均成績及方差.已知某校初三共有名學(xué)生參加中考,為了估計該校學(xué)生的化學(xué)原始成績達到等級及以上(含等級)的人數(shù),將該校學(xué)生的化學(xué)原始成績看作服從正態(tài)分布,并用這名學(xué)生的化學(xué)平均成績作為的估計值,用這名學(xué)生化學(xué)成績的方差作為的估計值,計算人數(shù)(結(jié)果保留整數(shù))附:,,.20.(12分)在一次重大軍事聯(lián)合演習(xí)中,以點為中心的海里以內(nèi)海域被設(shè)為警戒區(qū)域,任何船只不得經(jīng)過該區(qū)域.已知點正北方向海里處有一個雷達觀測站,某時刻測得一艘勻速直線行駛的船只位于點北偏東,且與點相距海里的位置,經(jīng)過小時又測得該船已行駛到位于點北偏東,且與點相距海里的位置(1)求該船的行駛速度(單位:海里/小時);(2)該船能否不改變方向繼續(xù)直線航行?請說明理由21.(12分)已知點,圓C:,l:.(1)若直線過點M,且被圓C截得的弦長為,求該直線的方程;(2)設(shè)P為已知直線l上的動點,過點P向圓C作一條切線,切點為Q,求的最小值.22.(10分)如圖①,等腰梯形中,,分別為的中點,,現(xiàn)將四邊形沿折起,使平面平面,得到如圖②所示的多面體,在圖②中:(1)證明:平面平面;(2)求四棱錐的體積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題意設(shè)出拋物線的標(biāo)準(zhǔn)方程,再利用焦點為建立,解方程即可.【詳解】由題意,設(shè)拋物線標(biāo)準(zhǔn)方程為,所以,解得,所以拋物線標(biāo)準(zhǔn)方程為.故選:D2、D【解析】根據(jù)數(shù)列的遞推關(guān)系式,求得數(shù)列的周期性,結(jié)合周期性得到,即可求解.【詳解】解:由題意,數(shù)列滿足,且,可得,可得數(shù)列是以三項為周期的周期數(shù)列,所以.故選:D.3、C【解析】根據(jù)直線的斜率存在與不存在,分類討論,結(jié)合雙曲線的漸近線的性質(zhì),即可求解.【詳解】當(dāng)直線的斜率不存在時,直線過雙曲線的右頂點,方程為,滿足題意;當(dāng)直線的斜率存在時,若直線與兩漸近線平行,也能滿足與雙曲線有且僅有一個公共點.綜上可得,滿足條件的直線共有3條.故選:C.【點睛】本題主要考查了直線與雙曲線的位置關(guān)系,以及雙曲線的漸近線的性質(zhì),其中解答中忽視斜率不存在的情況是解答的一個易錯點,著重考查了分析問題和解答問題的能力,以及分類討論思想的應(yīng)用,屬于基礎(chǔ)題.4、B【解析】分析的單調(diào)性,即可判斷和選擇.【詳解】因為,顯然隨著的增大,是遞增的,故是遞減的,則數(shù)列是遞減數(shù)列.故選:B.5、A【解析】根據(jù)給定條件求出,再求出圓O到直線l的距離即可計算作答.【詳解】圓的圓心O,半徑,因,則,而,則,即是正三角形,點O到直線l的距離,因此,,解得,所以實數(shù)m等于.故選:A6、B【解析】AD選項,舉出反例即可;BC選項,利用不等式的基本性質(zhì)進行判斷.【詳解】當(dāng),時,滿足,此時,故A錯誤;因,所以,,,B正確;因為,所以,,故,C錯誤;當(dāng),時,滿足,,,所以,D錯誤.故選:B7、B【解析】根據(jù)題意,當(dāng)時,有一個零點,進而將問題轉(zhuǎn)化為當(dāng)時,有兩個實數(shù)根,再研究函數(shù)即可得答案.【詳解】解:因為存在三個零點,所以方程有三個實數(shù)根,因為當(dāng)時,由得,解得,有且只有一個實數(shù)根,所以當(dāng)時,有兩個實數(shù)根,即有兩個實數(shù)根,所以令,則,所以當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,因為,,,所以的圖象如圖所示,所以有兩個實數(shù)根,則故選:B8、D【解析】利用給定的通項公式直接計算即得.【詳解】因數(shù)列的通項公式為,則有,所以.故選:D9、D【解析】根據(jù)等差數(shù)列的性質(zhì)及等差中項結(jié)合前項和公式求得,,從而得出結(jié)論.【詳解】,,,,,,,使數(shù)列的前n項和成立時n的最小值為10,故選:D.10、C【解析】以、為鄰邊作平行四邊形,連接,計算出、的長,證明出,利用勾股定理可求得的長.【詳解】如下圖所示,以、為鄰邊作平行四邊形,連接,因為,,則,又因為,,,故二面角的平面角為,因為四邊形為平行四邊形,則,,因為,故為等邊三角形,則,,則,,,故平面,因為平面,則,故.故選:C.11、A【解析】由題意設(shè)出拋物線的方程,再結(jié)合焦點坐標(biāo)即可求出拋物線的方程.【詳解】∵拋物線為,∴可設(shè)拋物線方程為,∴即,∴拋物線方程為,故選:A.12、B【解析】根據(jù)數(shù)陣可知第行為,利用等差數(shù)列求和,即可得到答案;【詳解】根據(jù)數(shù)陣可知第行為,,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】由已知可用表示,代入所求式子后,結(jié)合二次函數(shù)的性質(zhì)可求【詳解】解:由題意得,即,所以,根據(jù)二次函數(shù)的性質(zhì)可知,當(dāng)時,上式取得最小值4,故的最小值2故答案為:214、.【解析】將代入計算,利用和互為相反數(shù),作差可得,計算可得結(jié)果.【詳解】解:函數(shù)則.,,作差可得:,即,解得:代入此時成立.故答案為:.15、【解析】利用基本不等式即可求解.【詳解】,,又,,,當(dāng)且僅當(dāng)即,等號成立,.故答案為:【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.16、【解析】根據(jù)直線與雙曲線只有一個交點可知直線與雙曲線平行,由漸近線斜率可列出的齊次方程,利用齊次方程求解.【詳解】直線與雙曲線有且只有一個交點,且焦點,直線與雙曲線漸近線平行,,即,,即,.則雙曲線的方程為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在點,使得為定值.【解析】(1)設(shè),,,結(jié)合條件即求;(2)由題可設(shè)直線方程,利用韋達定理法可得,再結(jié)合條件可得點的軌跡方程為,然后利用橢圓的定義即得結(jié)論.【小問1詳解】設(shè),,,橢圓方程為:,橢圓過點,,解得t=1,所以橢圓F的方程是【小問2詳解】由題可得焦點的坐標(biāo)分別為,當(dāng)直線AB或CD的斜率不存在時,點M的坐標(biāo)為或,當(dāng)直線AB和CD的斜率都存在時,設(shè)斜率分別為,點,直線AB為,聯(lián)立,得則,,同理可得,,因為,所以,化簡得由題意,知,所以設(shè)點,則,所以,化簡得,當(dāng)直線或的斜率不存在時,點M的坐標(biāo)為或,也滿足此方程所以點在橢圓上,根據(jù)橢圓定義可知,存在定點,使得為定值【點睛】關(guān)鍵點點睛:本題的關(guān)鍵是利用韋達定理法及題設(shè)條件求出點M的軌跡方程,再結(jié)合橢圓的定義,從而問題得到解決.18、(1);(2)存在,T(0,1)﹒【解析】(1)根據(jù)橢圓的定義,結(jié)合即可求P的軌跡方程;(2)假設(shè)存在T(0,t),設(shè)AB方程為,聯(lián)立直線方程和橢圓方程,代入=0即可求出定點T.【小問1詳解】由題可知,,則,由橢圓定義知P的軌跡是以F1、為焦點,且長軸長為的橢圓,∴,∴,∴P的軌跡方程為C:;【小問2詳解】假設(shè)存在T(0,t)滿足題意,易得AB的斜率一定存在,否則不會存在T滿足題意,設(shè)直線AB的方程為,聯(lián)立,化為,易知恒成立,∴(*)由題可知,將(*)代入可得:即∴,解,∴在y軸上存在定點T(0,1),使以AB為直徑的圓恒過這個點T.19、(1)(2)85(3)23【解析】(1)根據(jù)所有矩形面積之和等于1可得;(2)先根據(jù)矩形面積之和判斷達到等級的最低分?jǐn)?shù)為x所在區(qū)間,然后根據(jù)矩形面積之和等于0.9可得;(3)由題知,所以由可得.【小問1詳解】由得【小問2詳解】由題意可知,要使等級達到等級及以上,則成績需超過的學(xué)生.因為,記達到等級的最低分?jǐn)?shù)為x,則,則由,解得所以該市學(xué)生中考化學(xué)原始成績不少于85分才能達到等級及以上.【小問3詳解】由題知,因為所以故該校學(xué)生的化學(xué)原始成績達到等級及以上的人數(shù)大約為人.20、(1)海里/小時;(2)該船要改變航行方向,理由見解析.【解析】(1)設(shè)一個單位為海里,建立以為坐標(biāo)原點,正東、正北方向分別為、軸的正方向建立平面直角坐標(biāo)系,計算出,即可求得該船的行駛速度;(2)求出直線的方程,計算出點到直線的距離,可得出結(jié)論.【小問1詳解】解:設(shè)一個單位為海里,建立以為坐標(biāo)原點,正東、正北方向分別為、軸的正方向建立如下圖所示的平面直角坐標(biāo)系,則坐標(biāo)平面中,,且,,則、、,,所以,所以、兩地的距離為海里,所以該船行駛的速度為海里/小時.【小問2詳解】解:直線的斜率為,所以直線的方程為,即,所以點到直線的距離為,所以直線會與以為圓心,以個單位長為半徑的圓相交,因此該船要改變航行方向,否則會進入警戒區(qū)域21、(1)或(2)【解析】(1)求出圓的圓心到直線的距離,再利用垂徑定理計算列方程計算;(2)由題意可知當(dāng)最小時,連線與已知直線垂直,求出,再利用計算即可.【小問1詳解】由題意可知圓的圓心到直線的距離為①當(dāng)直線斜率不存在時,圓的圓心到直線距離為1,滿足題意;②當(dāng)直線斜率存在時,設(shè)過的直線方程為:,即由點到直線距離公式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論