版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省徐州市部分2024學年中考數(shù)學適應性模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是()A. B. C. D.2.把不等式組的解集表示在數(shù)軸上,正確的是()A. B.C. D.3.若代數(shù)式的值為零,則實數(shù)x的值為()A.x=0 B.x≠0 C.x=3 D.x≠34.下列圖形是由同樣大小的棋子按照一定規(guī)律排列而成的,其中,圖①中有5個棋子,圖②中有10個棋子,圖③中有16個棋子,…,則圖⑥________中有個棋子()A.31 B.35 C.40 D.505.設x1,x2是一元二次方程x2﹣2x﹣5=0的兩根,則x12+x22的值為()A.6 B.8 C.14 D.166.如圖,任意轉動正六邊形轉盤一次,當轉盤停止轉動時,指針指向大于3的數(shù)的概率是()A. B. C. D.7.某微生物的直徑為0.000005035m,用科學記數(shù)法表示該數(shù)為()A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106 D.5.035×10﹣58.如圖,將△ABC繞點C順時針旋轉,點B的對應點為點E,點A的對應點為點D,當點E恰好落在邊AC上時,連接AD,若∠ACB=30°,則∠DAC的度數(shù)是()A. B. C. D.9.下列命題是真命題的是()A.如實數(shù)a,b滿足a2=b2,則a=bB.若實數(shù)a,b滿足a<0,b<0,則ab<0C.“購買1張彩票就中獎”是不可能事件D.三角形的三個內角中最多有一個鈍角10.計算(x-2)(x+5)的結果是A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-10二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知l1∥l2∥l3,相鄰兩條平行直線間的距離相等.若等腰直角三角形ABC的直角頂點C在l1上,另兩個頂點A、B分別在l3、l2上,則tanα的值是______.12.半徑為2的圓中,60°的圓心角所對的弧的弧長為_____.13.如果兩個相似三角形的面積的比是4:9,那么它們對應的角平分線的比是_____.14.若點A(1,m)在反比例函數(shù)y=的圖象上,則m的值為________.15.如圖,四邊形ACDF是正方形,和都是直角,且點三點共線,,則陰影部分的面積是__________.16.如圖,小明在A時測得某樹的影長為3米,B時又測得該樹的影長為12米,若兩次日照的光線互相垂直,則樹的高度為_________米.三、解答題(共8題,共72分)17.(8分)如圖,AB是半圓O的直徑,點P是半圓上不與點A,B重合的動點,PC∥AB,點M是OP中點.(1)求證:四邊形OBCP是平行四邊形;(2)填空:①當∠BOP=時,四邊形AOCP是菱形;②連接BP,當∠ABP=時,PC是⊙O的切線.18.(8分)先化簡,再求值:,請你從﹣1≤x<3的范圍內選取一個適當?shù)恼麛?shù)作為x的值.19.(8分)已知A、B、C三地在同一條路上,A地在B地的正南方3千米處,甲、乙兩人分別從A、B兩地向正北方向的目的地C勻速直行,他們分別和A地的距離s(千米)與所用的時間t(小時)的函數(shù)關系如圖所示.(1)圖中的線段l1是(填“甲”或“乙”)的函數(shù)圖象,C地在B地的正北方向千米處;(2)誰先到達C地?并求出甲乙兩人到達C地的時間差;(3)如果速度慢的人在兩人相遇后立刻提速,并且比先到者晚1小時到達C地,求他提速后的速度.20.(8分)定義:若某拋物線上有兩點A、B關于原點對稱,則稱該拋物線為“完美拋物線”.已知二次函數(shù)y=ax2-2mx+c(a,m,c均為常數(shù)且ac≠0)是“完美拋物線”:(1)試判斷ac的符號;(2)若c=-1,該二次函數(shù)圖象與y軸交于點C,且S△ABC=1.①求a的值;②當該二次函數(shù)圖象與端點為M(-1,1)、N(3,4)的線段有且只有一個交點時,求m的取值范圍.21.(8分)如圖1,圖2分別是某款籃球架的實物圖與示意圖,已知底座BC=1.5米,底座BC與支架AC所成的角∠ACB=60°,支架AF的長為2.50米,籃板頂端F點到籃筐D的距離FD=1.3米,籃板底部支架HE與支架AF所成的角∠FHE=45°,求籃筐D到地面的距離.(精確到0.01米參考數(shù)據(jù):≈1.73,≈1.41)22.(10分)如圖,在平行四邊形ABCD中,E、F是對角線BD上的兩點,且BF=DE.求證:AE∥CF.23.(12分)如圖①,在正方形ABCD中,點E與點F分別在線段AC、BC上,且四邊形DEFG是正方形.(1)試探究線段AE與CG的關系,并說明理由.(2)如圖②若將條件中的四邊形ABCD與四邊形DEFG由正方形改為矩形,AB=3,BC=1.①線段AE、CG在(1)中的關系仍然成立嗎?若成立,請證明,若不成立,請寫出你認為正確的關系,并說明理由.②當△CDE為等腰三角形時,求CG的長.24.九年級學生到距離學校6千米的百花公園去春游,一部分學生步行前往,20分鐘后另一部分學生騎自行車前往,設(分鐘)為步行前往的學生離開學校所走的時間,步行學生走的路程為千米,騎自行車學生騎行的路程為千米,關于的函數(shù)圖象如圖所示.(1)求關于的函數(shù)解析式;(2)步行的學生和騎自行車的學生誰先到達百花公園,先到了幾分鐘?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解題分析】
根據(jù)菱形的性質得出△DAB是等邊三角形,進而利用全等三角形的判定得出△ABG≌△DBH,得出四邊形GBHD的面積等于△ABD的面積,進而求出即可.【題目詳解】連接BD,∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設AD、BE相交于點G,設BF、DC相交于點H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF-S△ABD==.故選B.2、A【解題分析】
分別求出各個不等式的解集,再求出這些解集的公共部分并在數(shù)軸上表示出來即可.【題目詳解】由①,得x≥2,
由②,得x<1,
所以不等式組的解集是:2≤x<1.
不等式組的解集在數(shù)軸上表示為:
.
故選A.【題目點撥】本題考查的是解一元一次不等式組.熟知“同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到”的原則是解答此題的關鍵.3、A【解題分析】
根據(jù)分子為零,且分母不為零解答即可.【題目詳解】解:∵代數(shù)式的值為零,∴x=0,此時分母x-3≠0,符合題意.故選A.【題目點撥】本題考查了分式的值為零的條件.若分式的值為零,需同時具備兩個條件:①分子的值為0,②分母的值不為0,這兩個條件缺一不可.4、C【解題分析】
根據(jù)題意得出第n個圖形中棋子數(shù)為1+2+3+…+n+1+2n,據(jù)此可得.【題目詳解】解:∵圖1中棋子有5=1+2+1×2個,圖2中棋子有10=1+2+3+2×2個,圖3中棋子有16=1+2+3+4+3×2個,…∴圖6中棋子有1+2+3+4+5+6+7+6×2=40個,故選C.【題目點撥】本題考查了圖形的變化規(guī)律,通過從一些特殊的圖形變化中發(fā)現(xiàn)不變的因素或按規(guī)律變化的因素,然后推廣到一般情況.5、C【解題分析】
根據(jù)根與系數(shù)的關系得到x1+x2=2,x1?x2=-5,再變形x12+x22得到(x1+x2)2-2x1?x2,然后利用代入計算即可.【題目詳解】∵一元二次方程x2-2x-5=0的兩根是x1、x2,
∴x1+x2=2,x1?x2=-5,
∴x12+x22=(x1+x2)2-2x1?x2=22-2×(-5)=1.
故選C.【題目點撥】考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關系:若方程的兩根為x1,x2,則x1+x2=-,x1?x2=.6、D【解題分析】分析:根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.詳解:∵共6個數(shù),大于3的有3個,∴P(大于3)=.故選D.點睛:本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.7、A【解題分析】試題分析:0.000005035m,用科學記數(shù)法表示該數(shù)為5.035×10﹣6,故選A.考點:科學記數(shù)法—表示較小的數(shù).8、D【解題分析】
由題意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°?∠DCA)÷2=(180°?30°)÷2=75°.故選D.【題目點撥】本題主要考查了旋轉的性質,解題的關鍵是掌握旋轉的性質:①對應點到旋轉中心的距離相等.②對應點與旋轉中心所連線段的夾角等于旋轉角.③旋轉前、后的圖形全等.9、D【解題分析】
A.兩個數(shù)的平方相等,這兩個數(shù)不一定相等,有正負之分即可判斷B.同號相乘為正,異號相乘為負,即可判斷C.“購買1張彩票就中獎”是隨機事件即可判斷D.根據(jù)三角形內角和為180度,三個角中不可能有兩個以上鈍角即可判斷【題目詳解】如實數(shù)a,b滿足a2=b2,則a=±b,A是假命題;數(shù)a,b滿足a<0,b<0,則ab>0,B是假命題;若實“購買1張彩票就中獎”是隨機事件,C是假命題;三角形的三個內角中最多有一個鈍角,D是真命題;故選:D【題目點撥】本題考查了命題與定理,根據(jù)實際判斷是解題的關鍵10、C【解題分析】
根據(jù)多項式乘以多項式的法則進行計算即可.【題目詳解】x-2x+5故選:C.【題目點撥】考查多項式乘以多項式,掌握多項式乘以多項式的運算法則是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解題分析】如圖,分別過點A,B作AE⊥,BF⊥,BD⊥,垂足分別為E,F(xiàn),D.∵△ABC為等腰直角三角形,∴AC=BC,∠ACB=90°,∴∠ACE+∠BCF=90°.∵AE⊥,BF⊥∴∠CAE+∠ACE=90°,∠CBF+∠BCF=90°,∴∠CAE=∠BCF,∠ACE=∠CBF.∵∠CAE=∠BCF,AC=BC,∠ACE=∠CBF,∴△ACE≌△CBF,∴CE=BF,AE=CF.設平行線間距離為d=l,則CE=BF=BD=1,AE=CF=2,AD=EF=CE+CF=3,∴tanα=tan∠BAD==.點睛:分別過點A,B作AE⊥,BF⊥,BD⊥,垂足分別為E,F(xiàn),D,可根據(jù)ASA證明△ACE≌△CBF,設平行線間距離為d=1,進而求出AD、BD的值;本題考查了全等三角形的判定和銳角三角函數(shù),解題的關鍵是合理添加輔助線構造全等三角形;12、【解題分析】根據(jù)弧長公式可得:=,故答案為.13、2:1【解題分析】先根據(jù)相似三角形面積的比是4:9,求出其相似比是2:1,再根據(jù)其對應的角平分線的比等于相似比,可知它們對應的角平分線比是2:1.故答案為2:1.點睛:本題考查的是相似三角形的性質,即相似三角形對應邊的比、對應高線的比、對應角平分線的比、周長的比都等于相似比;面積的比等于相似比的平方.14、3【解題分析】試題解析:把A(1,m)代入y=得:m=3.所以m的值為3.15、8【解題分析】【分析】證明△AEC≌△FBA,根據(jù)全等三角形對應邊相等可得EC=AB=4,然后再利用三角形面積公式進行求解即可.【題目詳解】∵四邊形ACDF是正方形,∴AC=FA,∠CAF=90°,∴∠CAE+∠FAB=90°,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠ACE=∠FAB,又∵∠AEC=∠FBA=90°,∴△AEC≌△FBA,∴CE=AB=4,∴S陰影==8,故答案為8.【題目點撥】本題考查了正方形的性質、全等三角形的判定與性質,三角形面積等,求出CE=AB是解題的關鍵.16、1【解題分析】
根據(jù)題意,畫出示意圖,易得:Rt△EDC∽Rt△FDC,進而可得;即DC2=ED?FD,代入數(shù)據(jù)可得答案.【題目詳解】根據(jù)題意,作△EFC,樹高為CD,且∠ECF=90°,ED=3,F(xiàn)D=12,易得:Rt△EDC∽Rt△DCF,有,即DC2=ED×FD,代入數(shù)據(jù)可得DC2=31,DC=1,故答案為1.三、解答題(共8題,共72分)17、(1)見解析;(2)①120°;②45°【解題分析】
(1)由AAS證明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出結論;
(2)①證出OA=OP=PA,得出△AOP是等邊三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;
②由切線的性質和平行線的性質得出∠BOP=90°,由等腰三角形的性質得出∠ABP=∠OPB=45°即可.【題目詳解】(1)∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵點M是OP的中點,∴OM=PM,在△CPM和△AOM中,,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圓O的直徑,∴OA=OB,∴PC=OB.又PC∥AB,∴四邊形OBCP是平行四邊形.(2)①∵四邊形AOCP是菱形,∴OA=PA,∵OA=OP,∴OA=OP=PA,∴△AOP是等邊三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案為120°;②∵PC是⊙O的切線,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案為45°.【題目點撥】本題是圓的綜合題目,考查了全等三角形的判定與性質、平行四邊形的判定、切線的性質、菱形的判定與性質、等邊三角形的判定與性質等知識;本題綜合性強,熟練掌握切線的性質和平行四邊形的判定是解題的關鍵.18、1.【解題分析】
根據(jù)分式的化簡法則:先算括號里的,再算乘除,最后算加減.對不同分母的先通分,按同分母分式加減法計算,且要把復雜的因式分解因式,最后約分,化簡完后再代入求值,但是不能代入-1,0,1,保證分式有意義.【題目詳解】解:====當x=2時,原式==1.【題目點撥】本題考查分式的化簡求值及分式成立的條件,掌握運算法則準確計算是本題的解題關鍵.19、(1)乙;3;(2)甲先到達,到達目的地的時間差為小時;(3)速度慢的人提速后的速度為千米/小時.【解題分析】分析:(1)根據(jù)題意結合所給函數(shù)圖象進行判斷即可;(2)由所給函數(shù)圖象中的信息先求出二人所對應的函數(shù)解析式,再由解析式結合圖中信息求出二人到達C地的時間并進行比較、判斷即可得到本問答案;(3)根據(jù)圖象中的信息結合(2)中的結論進行解答即可.詳解:(1)由題意結合圖象中的信息可知:圖中線段l1是乙的圖象;C地在B地的正北方6-3=3(千米)處.(2)甲先到達.設甲的函數(shù)解析式為s=kt,則有4=t,∴s=4t.∴當s=6時,t=.設乙的函數(shù)解析式為s=nt+3,則有4=n+3,即n=1.∴乙的函數(shù)解析式為s=t+3.∴當s=6時,t=3.∴甲、乙到達目的地的時間差為:(小時).(3)設提速后乙的速度為v千米/小時,∵相遇處距離A地4千米,而C地距A地6千米,∴相遇后需行2千米.又∵原來相遇后乙行2小時才到達C地,∴乙提速后2千米應用時1.5小時.即,解得:,答:速度慢的人提速后的速度為千米/小時.點睛:本題考查的是由函數(shù)圖象中獲取相關信息來解決問題的能力,解題的關鍵是結合題意弄清以下兩點:(1)函數(shù)圖象上點的橫坐標和縱坐標各自所表示是實際意義;(2)圖象中各關鍵點(起點、終點、交點和轉折點)的實際意義.20、(1)ac<3;(3)①a=1;②m>或m<.【解題分析】
(1)設A
(p,q).則B
(-p,-q),把A、B坐標代入解析式可得方程組即可得到結論;
(3)由c=-1,得到p3=,a>3,且C(3,-1),求得p=±,①根據(jù)三角形的面積公式列方程即可得到結果;②由①可知:拋物線解析式為y=x3-3mx-1,根據(jù)M(-1,1)、N(3,4).得到這些MN的解析式y(tǒng)=x+(-1≤x≤3),聯(lián)立方程組得到x3-3mx-1=x+,故問題轉化為:方程x3-(3m+)x-=3在-1≤x≤3內只有一個解,建立新的二次函數(shù):y=x3-(3m+)x-,根據(jù)題意得到(Ⅰ)若-1≤x1<3且x3>3,(Ⅱ)若x1<-1且-1<x3≤3:列方程組即可得到結論.【題目詳解】(1)設A
(p,q).則B
(-p,-q),
把A、B坐標代入解析式可得:,
∴3ap3+3c=3.即p3=?,
∴?≥3,
∵ac≠3,
∴?>3,
∴ac<3;
(3)∵c=-1,
∴p3=,a>3,且C(3,-1),
∴p=±,
①S△ABC=×3×1=1,
∴a=1;
②由①可知:拋物線解析式為y=x3-3mx-1,
∵M(-1,1)、N(3,4).
∴MN:y=x+(-1≤x≤3),
依題,只需聯(lián)立在-1≤x≤3內只有一個解即可,
∴x3-3mx-1=x+,
故問題轉化為:方程x3-(3m+)x-=3在-1≤x≤3內只有一個解,
建立新的二次函數(shù):y=x3-(3m+)x-,
∵△=(3m+)3+11>3且c=-<3,
∴拋物線y=x3?(3m+)x?與x軸有兩個交點,且交y軸于負半軸.
不妨設方程x3?(3m+)x?=3的兩根分別為x1,x3.(x1<x3)
則x1+x3=3m+,x1x3=?
∵方程x3?(3m+)x?=3在-1≤x≤3內只有一個解.
故分兩種情況討論:
(Ⅰ)若-1≤x1<3且x3>3:則.即:,
可得:m>.
(Ⅱ)若x1<-1且-1<x3≤3:則.即:,
可得:m<,
綜上所述,m>或m<.【題目點撥】本題考查了待定系數(shù)法求二次函數(shù)的解析式,一元二次方程根與系數(shù)的關系,三角形面積公式,正確的理解題意是解題的關鍵.21、3.05米【解題分析】
延長FE交CB的延長線于M,過A作AG⊥FM于G,解直角三角形即可得到正確結論.【題目詳解】解:如圖:延長FE交CB的延長線于M,過A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC?tan60°=1.5×1.73=2.595,∴GM=AB=2.595,在Rt△AGF中,∵∠FAG=∠FHE=45°,sin∠FAG=,∴sin45°=,∴FG=1.76,∴DM=FG+GM﹣DF≈3.05米.答:籃框D到地面的距離是3.05米.【題目點撥】本題主要考查直角三角形和三角函數(shù),構造合適的輔助線是本題解題的關鍵.22、證明見解析【解題分析】試題分析:通過全等三角形△ADE≌△CBF的對
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 翻譯兼職合同
- 簡式房屋買賣定金合同范本
- 詳見建設工程施工合同GF
- 紅酒運輸資質轉讓合同范本
- 車輛貨物運輸合同
- 宅基地轉讓協(xié)議合同書
- 外賣訂單配送承包合同
- 正交薄壁孔音叉陀螺的設計和性能研究
- 極區(qū)弱觀測環(huán)境下的SINS-DVL-GNSS組合導航算法研究
- 2025年南寧貨運從業(yè)資格證試題答題APP
- 食材配送投標方案技術標
- 再見深海合唱簡譜【珠海童年樹合唱團】
- 《聚焦客戶創(chuàng)造價值》課件
- PTW-UNIDOS-E-放射劑量儀中文說明書
- 保險學(第五版)課件全套 魏華林 第0-18章 緒論、風險與保險- 保險市場監(jiān)管、附章:社會保險
- 許小年:淺析日本失去的30年-兼評“資產(chǎn)負債表衰退”
- 典范英語2b課文電子書
- 17~18世紀意大利歌劇探析
- β內酰胺類抗生素與合理用藥
- 何以中國:公元前2000年的中原圖景
- 第一章:公共政策理論模型
評論
0/150
提交評論