版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆湖南省長沙市寧鄉(xiāng)市數(shù)學高一第二學期期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.己知關于的不等式解集為,則突數(shù)的取值范圍為()A. B.C. D.2.若平面α∥平面β,直線平面α,直線n?平面β,則直線與直線n的位置關系是()A.平行 B.異面C.相交 D.平行或異面3.某小組由名男生、名女生組成,現(xiàn)從中選出名分別擔任正、副組長,則正、副組長均由男生擔任的概率為()A. B. C. D.4.l:與兩坐標軸所圍成的三角形的面積為A.6 B.1 C. D.35.某小組有3名男生和2名女生,從中任選2名學生參加演講比賽,那么下列互斥但不對立的兩個事件是()A.“至少1名男生”與“全是女生”B.“至少1名男生”與“至少有1名是女生”C.“至少1名男生”與“全是男生”D.“恰好有1名男生”與“恰好2名女生”6.將所有的正奇數(shù)按以下規(guī)律分組,第一組:1;第二組:3,5,7;第三組:9,11,13,15,17;…表示n是第i組的第j個數(shù),例如,,則()A. B. C. D.7.執(zhí)行如圖所示的程序框圖,令,若,則實數(shù)a的取值范圍是A. B.C. D.8.點關于直線對稱的點的坐標是()A. B. C. D.9.已知點到直線的距離為1,則的值為()A. B. C. D.10.已知,,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則__________.12.函數(shù)f(x)=coscos的最小正周期為________.13.已知等差數(shù)列的前項和為,且,,則;14.數(shù)列是等比數(shù)列,,,則的值是________.15.已知圓C:,點M的坐標為(2,4),過點N(4,0)作直線交圓C于A,B兩點,則的最小值為________16.已知數(shù)列的通項公式為,則該數(shù)列的前1025項的和___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)若關于的不等式的解集為,求的值;(2)若對任意恒成立,求的取值范圍.18.某廠每年生產(chǎn)某種產(chǎn)品萬件,其成本包含固定成本和浮動成本兩部分.已知每年固定成本為20萬元,浮動成本,.若每萬件該產(chǎn)品銷售價格為40萬元,且每年該產(chǎn)品產(chǎn)銷平衡.(1)設年利潤為(萬元),試求與的關系式;(2)年產(chǎn)量為多少萬件時,該廠所獲利潤最大?并求出最大利潤.19.四棱錐中,,,底面,,直線與底面所成的角為,、分別是、的中點.(1)求證:直線平面;(2)若,求證:直線平面;(3)求棱錐的體積.20.本題共3個小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.已知數(shù)列滿足.(1)若,求的取值范圍;(2)若是公比為等比數(shù)列,,求的取值范圍;(3)若成等差數(shù)列,且,求正整數(shù)的最大值,以及取最大值時相應數(shù)列的公差.21.已知函數(shù)().(1)若不等式的解集為,求的取值范圍;(2)當時,解不等式;(3)若不等式的解集為,若,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】
利用絕對值的幾何意義求解,即表示數(shù)軸上與和-2的距離之和,其最小值為.【題目詳解】∵,∴由解集為,得,解得.故選C.【題目點撥】本題考查絕對值不等式,考查絕對值的性質,解題時可按絕對值定義去絕對值符號后再求解,也可應用絕對值的幾何意義求解.不等式解集為,可轉化為的最小值不小于1,這是解題關鍵.2、D【解題分析】
由面面平行的定義,可得兩直線無公共點,可得所求結論.【題目詳解】平面α∥平面β,可得兩平面α,β無公共點,即有直線與直線也無公共點,可得它們異面或平行,故選:D.【題目點撥】本題考查空間線線的位置關系,考查面面平行的定義,屬于基礎題.3、B【解題分析】
根據(jù)古典概型的概率計算公式,先求出基本事件總數(shù),正、副組長均由男生擔任包含的基本事件總數(shù),由此能求出正、副組長均由男生擔任的概率.【題目詳解】某小組由2名男生、2名女生組成,現(xiàn)從中選出2名分別擔任正、副組長,基本事件總數(shù),正、副組長均由男生擔任包含的基本事件總數(shù),正、副組長均由男生擔任的概率為.故選.【題目點撥】本題主要考查古典概型的概率求法。4、D【解題分析】
先求出直線與坐標軸的交點,再求三角形的面積得解.【題目詳解】當x=0時,y=2,當y=0時,x=3,所以三角形的面積為.故選:D【題目點撥】本題主要考查直線與坐標軸的交點的坐標的求法,意在考查學生對該知識的理解掌握水平和分析推理能力.5、D【解題分析】
從3名男生和2名女生中任選2名學生的所有結果有“2名男生”、“2名女生”、“1名男生和1名女生”.選項A中的兩個事件為對立事件,故不正確;選項B中的兩個事件不是互斥事件,故不正確;選項C中的兩個事件不是互斥事件,故不正確;選項D中的兩個事件為互斥但不對立事件,故正確.選D.6、C【解題分析】
由等差數(shù)列求和公式及進行簡單的合情推理可得:2019為第1010個正奇數(shù),設2019在第n組中,則有,,解得:n=32,又前31組共有961個奇數(shù),則2019為第32組的第1010-961=49個數(shù),得解.【題目詳解】由已知有第n組有2n-1個連續(xù)的奇數(shù),則前n組共有個連續(xù)的奇數(shù),又2019為第1010個正奇數(shù),設2019在第n組中,則有,,解得:n=32,又前31組共有961個奇數(shù),則2019為第32組的第1010-961=49個數(shù),即2019=(32,49),故選:C.【題目點撥】本題考查歸納推理,解題的關鍵是根據(jù)等差數(shù)列求和公式分析出規(guī)律,再結合數(shù)列的性質求解,屬于中等題.7、D【解題分析】該程序的功能是計算并輸出分段函數(shù).當時,,解得;當時,,解得;當時,,無解.綜上,,則實數(shù)a的取值范圍是.故選D.8、A【解題分析】
設點關于直線對稱的點為,根據(jù)斜率關系和中點坐標公式,列出方程組,即可求解.【題目詳解】由題意,設點關于直線對稱的點為,則,解得,即點關于直線對稱的點為,故選A.【題目點撥】本題主要考查了點關于直線的對稱點的求解,其中解答中熟記點關于直線的對稱點的解法是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.9、D【解題分析】
根據(jù)點到直線的距離公式列式求解參數(shù)即可.【題目詳解】由題,,因為,故.故選:D【題目點撥】本題主要考查了點到線的距離公式求參數(shù)的問題,屬于基礎題.10、A【解題分析】
由,代入運算即可得解.【題目詳解】解:因為,,所以.故選:A.【題目點撥】本題考查了兩角差的正切公式,屬基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】12、2【解題分析】f(x)=coscos=cos·sin=sinπx,最小正周期為T==213、1【解題分析】
若數(shù)列{an}為等差數(shù)列則Sm,S2m-Sm,S3m-S2m仍然成等差數(shù)列.所以S10,S20-S10,S30-S20仍然成等差數(shù)列.因為在等差數(shù)列{an}中有S10=10,S20=30,所以S30=1.故答案為1.14、【解題分析】
由題得計算得解.【題目詳解】由題得,所以.因為等比數(shù)列同號,所以.故答案為:【題目點撥】本題主要考查等比數(shù)列的性質和等比中項的應用,意在考查學生對這些知識的理解掌握水平.15、8【解題分析】
先將所求化為M到AB中點的距離的最小值問題,再求得AB中點的軌跡為圓,利用點M到圓心的距離減去半徑求得結果.【題目詳解】設A、B中點為Q,連接QC,則QC,所以Q的軌跡是以NC為直徑的圓,圓心為P(5,0),半徑為1,又,即求點M到P的距離減去半徑,又,所以,故答案為8【題目點撥】本題考查了向量的加法運算,考查了求圓中弦中點軌跡的幾何方法,考查了點點距公式,考查了分析解決問題的能力,屬于中檔題.16、2039【解題分析】
根據(jù)所給分段函數(shù),依次列舉出當時的值,即可求得的值.【題目詳解】當時,,當時,,,共1個2.當時,,,共3個2.當時,,,共7個2.當時,,,共15個2.當時,,,共31個2.當時,,,共63個2.當時,,,共127個2.當時,,,共255個2.當時,,,共511個2.當時,,,共1個2.所以由以上可知故答案為:2039【題目點撥】本題考查了分段函數(shù)的應用,由所給式子列舉出各個項,即可求和,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】
(1)不等式可化為,而解集為,可利用韋達定理或直接代入即可得到答案;(2)法一:討論和時,分離參數(shù)利用均值不等式即可得到取值范圍;法二:利用二次函數(shù)在上大于等于0恒成立,即可得到取值范圍.【題目詳解】(1)法一:不等式可化為,其解集為,由根與系數(shù)的關系可知,解得,經(jīng)檢驗時滿足題意.法二:由題意知,原不等式所對應的方程的兩個實數(shù)根為和4,將(或4)代入方程計算可得,經(jīng)檢驗時滿足題意.(2)法一:由題意可知恒成立,①若,則恒成立,符合題意。②若,則恒成立,而,當且僅當時取等號,所以,即.故實數(shù)的取值范圍為.法二:二次函數(shù)的對稱軸為.①若,即,函數(shù)在上單調遞增,恒成立,故;②若,即,此時在上單調遞減,在上單調遞增,由得.故;③若,即,此時函數(shù)在上單調遞減,由得,與矛盾,故不存在.綜上所述,實數(shù)的取值范圍為.【題目點撥】本題主要考查一元二次不等式的性質,不等式恒成立中含參問題,意在考查學生的分析能力,計算能力及轉化能力,難度較大.18、(1);(2)產(chǎn)量(萬件)時,該廠所獲利潤最大為100萬元.【解題分析】
(1)由銷售收入減去成本可得利潤;(2)分段求出的最大值,然后比較可得.【題目詳解】(1)由題意;即;(2)時,,時,,當時,在是遞增,在上遞減,時,綜上,產(chǎn)量(萬件)時,該廠所獲利潤最大為100萬元.【題目點撥】本題考查函數(shù)模型的應用,根據(jù)所給函數(shù)模型求出函數(shù)解析式,然后由分段函數(shù)性質分段求出最大值,比較后得出函數(shù)最大值.考查學生的應用能力.19、(1)見解析(2)見解析(3)【解題分析】
(1)由中位線定理可得,,再根據(jù)平行公理可得,,即可根據(jù)線面平行的判定定理證出;(2)根據(jù)題意可計算出,而是的中點,可得,又,即可根據(jù)線面垂直的判定定理證出;(3)根據(jù)等積法,即可求出.【題目詳解】(1)證明:連接,,,、是、中點,,從而.又平面,平面,直線平面;(2)證明:,,.底面,直線與底面成角,..是的中點,.,.面,面,直線平面;(3)由題可知,,.【題目點撥】本題主要考查線面平行的判定定理,線面垂直的判定定理的應用,以及利用等積法求三棱錐的體積,意在考查學生的直觀想象能力,邏輯推理能力和轉化能力,屬于基礎題.20、(1);(2);(3)的最大值為1999,此時公差為.【解題分析】
(1)依題意:,又將已知代入求出x的范圍;(2)先求出通項:,由求出,對q分類討論求出Sn分別代入不等式Sn≤Sn+1≤3Sn,得到關于q的不等式組,解不等式組求出q的范圍.(3)依題意得到關于k的不等式,得出k的最大值,并得出k取最大值時a1,a2,…ak的公差.【題目詳解】(1)依題意:,∴;又∴3≤x≤27,綜上可得:3≤x≤6(2)由已知得,,,∴,當q=1時,Sn=n,Sn≤Sn+1≤3Sn,即,成立.當1<q≤3時,,Sn≤Sn+1≤3Sn,即,∴不等式∵q>1,故3qn+1﹣qn﹣2=qn(3q﹣1)﹣2>2qn﹣2>0恒成立,而對于不等式qn+1﹣3qn+2≤0,令n=1,得q2﹣3q+2≤0,解得1≤q≤2,又當1≤q≤2,q﹣3<0,∴qn+1﹣3qn+2=qn(q﹣3)+2≤q(q﹣3)+2=(q﹣1)(q﹣2)≤0成立,∴1<q≤2,當時,,Sn≤Sn+1≤3Sn,即,∴此不等式即,3q﹣1>0,q﹣3<0,3qn+1﹣qn﹣2=qn(3q﹣1)﹣2<2qn﹣2<0,qn+1﹣3qn+2=qn(q﹣3)+2≥q(q﹣3)+2=(q﹣1)(q﹣2)>0∴時,不等式恒成立,∴q的取值范圍為:.(3)設a1,a2,…ak的公差為d.由,且a1=1,得即當n=1時,d≤2;當n=2,3,…,k﹣1時,由,得d,所以d,所以1000=k,即k2﹣2000k+1000≤0,得k≤1999所以k的最大值為1999,k=1999時,a1,a2,…ak的公差為.【題目點撥】本題考查等比數(shù)列的通項公式及前n項和的求法;考查不等式組的解法;找好分類討論的起點是解決本題的關鍵,屬于一道難題.21、(1);(2).;(3).【解題分析】試題分析:(1)對二項式系數(shù)進行討論,可得求出解集即可;(2)分為,,分別解出3種情形對應的不等式即可;(3)將問題轉化為對任意的,不等式恒成立,利用分離參數(shù)的思想得恒成立,求出其最大值即可.試題解析:(1)①當即時,,不合題意;②當即時,,即,∴,∴(2)即即①當即時,解集為②當即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人消費貸款額度調整合同范本4篇
- 2025年新世紀版高二歷史上冊階段測試試卷含答案
- 二零二五年度高新技術研發(fā)中心場地與實驗室出租合同3篇
- 2025年蘇教新版九年級地理上冊月考試卷含答案
- 2025土地整治項目合同
- 2025年個人房產(chǎn)抵押借款合同模板與執(zhí)行細則
- 事業(yè)單位正式聘用合同模板與相關附件(2024年版)版
- 2025連鎖配送網(wǎng)絡加盟的合同
- 2025版旅游度假區(qū)環(huán)境保潔與秩序維護承包合同3篇
- 2025作品委托設計合同
- 和平精英電競賽事
- 四年級數(shù)學豎式計算100道文檔
- “新零售”模式下生鮮電商的營銷策略研究-以盒馬鮮生為例
- 項痹病辨證施護
- 職業(yè)安全健康工作總結(2篇)
- 懷化市數(shù)字經(jīng)濟產(chǎn)業(yè)發(fā)展概況及未來投資可行性研究報告
- 07FD02 防空地下室電氣設備安裝
- 教師高中化學大單元教學培訓心得體會
- 高中語文日積月累23
- 彈簧分離問題經(jīng)典題目
- 部編版高中歷史中外歷史綱要(下)世界史導言課課件
評論
0/150
提交評論