![2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸納與達(dá)標(biāo)檢測第51講拋物線(講)(原卷版)_第1頁](http://file4.renrendoc.com/view10/M02/31/2C/wKhkGWXlFUGAGDHwAAGt_sgkORE675.jpg)
![2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸納與達(dá)標(biāo)檢測第51講拋物線(講)(原卷版)_第2頁](http://file4.renrendoc.com/view10/M02/31/2C/wKhkGWXlFUGAGDHwAAGt_sgkORE6752.jpg)
![2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸納與達(dá)標(biāo)檢測第51講拋物線(講)(原卷版)_第3頁](http://file4.renrendoc.com/view10/M02/31/2C/wKhkGWXlFUGAGDHwAAGt_sgkORE6753.jpg)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第51講拋物線思維導(dǎo)圖知識梳理1.拋物線的定義平面內(nèi)與一個(gè)定點(diǎn)F和一條定直線l(點(diǎn)F不在直線l上)的距離相等的點(diǎn)的軌跡叫做拋物線,定點(diǎn)F叫做拋物線的焦點(diǎn),定直線l叫做拋物線的準(zhǔn)線.2.拋物線的標(biāo)準(zhǔn)方程和幾何性質(zhì)標(biāo)準(zhǔn)y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)方程p的幾何意義:焦點(diǎn)F到準(zhǔn)線l的距離焦點(diǎn)到頂點(diǎn)以及頂點(diǎn)到準(zhǔn)線的距離均為eq\a\vs4\al(\f(p,2).)圖形頂點(diǎn)O(0,0)對稱軸x軸y軸焦點(diǎn)Feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(p,2),0))Feq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(p,2),0))Feq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(p,2)))Feq\b\lc\(\rc\)(\a\vs4\al\co1(0,-\f(p,2)))離心率e=1準(zhǔn)線方程x=-eq\f(p,2)x=eq\f(p,2)y=-eq\f(p,2)y=eq\f(p,2)范圍x≥0,y∈Rx≤0,y∈Ry≥0,x∈Ry≤0,x∈R開口方向向右向左向上向下焦半徑(其中P(x0,y0))|PF|=x0+eq\f(p,2)|PF|=-x0+eq\f(p,2)|PF|=y(tǒng)0+eq\f(p,2)|PF|=-y0+eq\f(p,2)題型歸納題型1拋物線的定義及應(yīng)用【例11】(1)若拋物線y2=4x上一點(diǎn)P到其焦點(diǎn)F的距離為2,O為坐標(biāo)原點(diǎn),則△OFP的面積為()A.eq\f(1,2)B.1C.eq\f(3,2) D.2(2)設(shè)P是拋物線y2=4x上的一個(gè)動點(diǎn),若B(3,2),則|PB|+|PF|的最小值為________.【跟蹤訓(xùn)練11】若點(diǎn)A的坐標(biāo)為(3,2),F(xiàn)是拋物線y2=2x的焦點(diǎn),點(diǎn)M在拋物線上移動時(shí),使|MF|+|MA|取得最小值的M的坐標(biāo)為________.【跟蹤訓(xùn)練12】(2019·襄陽測試)已知拋物線y=eq\f(1,2)x2的焦點(diǎn)為F,準(zhǔn)線為l,M在l上,線段MF與拋物線交于N點(diǎn),若|MN|=eq\r(2)|NF|,則|MF|=________.【名師指導(dǎo)】與拋物線有關(guān)的最值問題,一般情況下都與拋物線的定義有關(guān).“看到準(zhǔn)線想焦點(diǎn),看到焦點(diǎn)想準(zhǔn)線”,這是解決與過拋物線焦點(diǎn)的弦有關(guān)問題的重要途徑.題型2拋物線的標(biāo)準(zhǔn)方程與幾何性質(zhì)【例21】(1)(2019·全國卷Ⅱ)若拋物線y2=2px(p>0)的焦點(diǎn)是橢圓eq\f(x2,3p)+eq\f(y2,p)=1的一個(gè)焦點(diǎn),則p=()A.2 B.3C.4 D.8(2)(2019·武漢調(diào)研)如圖,過拋物線y2=2px(p>0)的焦點(diǎn)F的直線l交拋物線于點(diǎn)A,B,交其準(zhǔn)線于點(diǎn)C,若|BC|=2|BF|,且|AF|=6,則此拋物線方程為()A.y2=9x B.y2=6xC.y2=3x D.y2=eq\r(3)x【跟蹤訓(xùn)練21】(2020·福建廈門一模)若拋物線x2=ay的焦點(diǎn)到準(zhǔn)線的距離為1,則a=()A.2 B.4C.±2 D.±4【跟蹤訓(xùn)練22】已知拋物線x2=2py(p>0)的焦點(diǎn)為F,點(diǎn)P為拋物線上的動點(diǎn),點(diǎn)M為其準(zhǔn)線上的動點(diǎn),若△FPM為邊長是4的等邊三角形,則此拋物線的方程為________.【名師指導(dǎo)】1.求拋物線標(biāo)準(zhǔn)方程的方法(1)定義法:若題目已給出拋物線的方程(含有未知數(shù)p),那么只需求出p即可.(2)待定系數(shù)法:若題目未給出拋物線的方程,對于焦點(diǎn)在x軸上的拋物線的標(biāo)準(zhǔn)方程可統(tǒng)一設(shè)為y2=ax(a≠0),a的正負(fù)由題設(shè)來定;焦點(diǎn)在y軸上的拋物線的標(biāo)準(zhǔn)方程可設(shè)為x2=ay(a≠0),這樣就減少了不必要的討論.2.拋物線性質(zhì)的應(yīng)用技巧(1)利用拋物線方程確定及應(yīng)用其焦點(diǎn)、準(zhǔn)線時(shí),關(guān)鍵是將拋物線方程化成標(biāo)準(zhǔn)方程.(2)要結(jié)合圖形分析,靈活運(yùn)用平面圖形的性質(zhì)簡化運(yùn)算.題型3直線與拋物線的位置關(guān)系【例31】(2019·全國卷Ⅰ)已知拋物線C:y2=3x的焦點(diǎn)為F,斜率為eq\f(3,2)的直線l與C的交點(diǎn)為A,B,與x軸的交點(diǎn)為P.(1)若|AF|+|BF|=4,求l的方程;(2)若eq\o(AP,\s\up7(→))=3eq\o(PB,\s\up7(→)),求|AB|.【跟蹤訓(xùn)練31】已知點(diǎn)M(-1,1)和拋物線C:y2=4x,過C的焦點(diǎn)且斜率為k的直線與C交于A,B兩點(diǎn).若∠AMB=90°,則k=________.【跟蹤訓(xùn)練32】設(shè)A,B為曲線C:y=eq\f(x2,2)上兩點(diǎn),A與B的橫坐標(biāo)之和為2.(1)求直線AB的斜率;(2)設(shè)M為曲線C上一點(diǎn),曲線C在點(diǎn)M處的切線與直線AB平行,且AM⊥BM,求直線AB的方程.【名師指導(dǎo)】1.直線與拋物線交點(diǎn)問題的解題思路(1)求交點(diǎn)問題,通常解直線方程與拋物線方程組成的方程組.(2)與交點(diǎn)相關(guān)的問題通常借助根與系數(shù)的關(guān)系或用向量法解決.2.解決拋物線的弦及弦中點(diǎn)問題的常用方法(1)有關(guān)直線與拋物線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國自動式雙面研磨床行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報(bào)告
- 土地廠房買賣合同
- 空心磚采購合同
- 石材采購合同范本
- 涂料勞務(wù)承包合同協(xié)議書
- 醫(yī)療器械配送合同
- 汽車貨物運(yùn)輸合同樣本
- 2025農(nóng)村簡易買賣合同
- 2025如何確定勞動合同的成立商業(yè)保理資格
- 最高額抵押擔(dān)保合同
- 2025財(cái)年美國國防預(yù)算概覽-美國國防部(英)
- 2024年江西省南昌市中考一模數(shù)學(xué)試題(含答案)
- 48貴州省貴陽市2023-2024學(xué)年五年級上學(xué)期期末數(shù)學(xué)試卷
- 《采暖空調(diào)節(jié)能技術(shù)》課件
- 游戲綜合YY頻道設(shè)計(jì)模板
- arcgis軟件操作解析課件
- 中興ZCTP 5GC高級工程師認(rèn)證考試題庫匯總(含答案)
- 大學(xué)生創(chuàng)新創(chuàng)業(yè)教程PPT全套完整教學(xué)課件
- 小學(xué)科學(xué)項(xiàng)目化作業(yè)的設(shè)計(jì)與實(shí)施研究
- 2020年中考生物試卷及答案
- MCNP-5A程序使用說明書
評論
0/150
提交評論