福建省漳州三中2024屆中考猜題數(shù)學(xué)試卷含解析_第1頁(yè)
福建省漳州三中2024屆中考猜題數(shù)學(xué)試卷含解析_第2頁(yè)
福建省漳州三中2024屆中考猜題數(shù)學(xué)試卷含解析_第3頁(yè)
福建省漳州三中2024屆中考猜題數(shù)學(xué)試卷含解析_第4頁(yè)
福建省漳州三中2024屆中考猜題數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

福建省漳州三中2024屆中考猜題數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.有一組數(shù)據(jù):3,4,5,6,6,則這組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)分別是()A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,62.在圓錐、圓柱、球、正方體這四個(gè)幾何體中,主視圖不可能是多邊形的是()A.圓錐 B.圓柱 C.球 D.正方體3.某商品的進(jìn)價(jià)為每件元.當(dāng)售價(jià)為每件元時(shí),每星期可賣出件,現(xiàn)需降價(jià)處理,為占有市場(chǎng)份額,且經(jīng)市場(chǎng)調(diào)查:每降價(jià)元,每星期可多賣出件.現(xiàn)在要使利潤(rùn)為元,每件商品應(yīng)降價(jià)()元.A.3 B.2.5 C.2 D.54.在聯(lián)歡會(huì)上,甲、乙、丙3人分別站在不在同一直線上的三點(diǎn)A、B、C上,他們?cè)谕鎿尩首拥挠螒颍谒麄冎虚g放一個(gè)木凳,誰先搶到凳子誰獲勝,為使游戲公平,凳子應(yīng)放的最恰當(dāng)?shù)奈恢檬恰鰽BC的()A.三條高的交點(diǎn) B.重心 C.內(nèi)心 D.外心5.已知△ABC,D是AC上一點(diǎn),尺規(guī)在AB上確定一點(diǎn)E,使△ADE∽△ABC,則符合要求的作圖痕跡是()A. B.C. D.6.下列實(shí)數(shù)中,有理數(shù)是()A. B. C.π D.7.如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點(diǎn),將△ABC折疊,使點(diǎn)A與點(diǎn)D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.8.如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A從出發(fā),繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一周,則點(diǎn)A不經(jīng)過()A.點(diǎn)M B.點(diǎn)N C.點(diǎn)P D.點(diǎn)Q9.如圖是嬰兒車的平面示意圖,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度數(shù)為()A.80° B.90° C.100° D.102°10.若x﹣2y+1=0,則2x÷4y×8等于()A.1 B.4 C.8 D.﹣16二、填空題(共7小題,每小題3分,滿分21分)11.若2a﹣b=5,a﹣2b=4,則a﹣b的值為________.12.二次函數(shù)y=ax2+bx+c的圖象如圖所示,以下結(jié)論:①abc>0;②4ac<b2;③2a+b>0;④其頂點(diǎn)坐標(biāo)為(,﹣2);⑤當(dāng)x<時(shí),y隨x的增大而減?。虎轪+b+c>0中,正確的有______.(只填序號(hào))13.不等式組的解集為________.14.含角30°的直角三角板與直線,的位置關(guān)系如圖所示,已知,∠1=60°,以下三個(gè)結(jié)論中正確的是____(只填序號(hào)).①AC=2BC②△BCD為正三角形③AD=BD15.已知二次函數(shù)與一次函數(shù)的圖象相交于點(diǎn),如圖所示,則能使成立的x的取值范圍是______.16.如圖,直線,點(diǎn)A1坐標(biāo)為(1,0),過點(diǎn)A1作x軸的垂線交直線于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長(zhǎng)為半徑畫弧交x軸于點(diǎn)A2;再過點(diǎn)A2作x軸的垂線交直線于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長(zhǎng)為半徑畫弧交x軸于點(diǎn)A3,…,按照此做法進(jìn)行下去,點(diǎn)A8的坐標(biāo)為__________.17.如圖,⊙O是△ABC的外接圓,∠AOB=70°,AB=AC,則∠ABC=__.

三、解答題(共7小題,滿分69分)18.(10分)已知圓O的半徑長(zhǎng)為2,點(diǎn)A、B、C為圓O上三點(diǎn),弦BC=AO,點(diǎn)D為BC的中點(diǎn),(1)如圖,連接AC、OD,設(shè)∠OAC=α,請(qǐng)用α表示∠AOD;(2)如圖,當(dāng)點(diǎn)B為的中點(diǎn)時(shí),求點(diǎn)A、D之間的距離:(3)如果AD的延長(zhǎng)線與圓O交于點(diǎn)E,以O(shè)為圓心,AD為半徑的圓與以BC為直徑的圓相切,求弦AE的長(zhǎng).19.(5分)先化簡(jiǎn),再求值:,請(qǐng)你從﹣1≤x<3的范圍內(nèi)選取一個(gè)適當(dāng)?shù)恼麛?shù)作為x的值.20.(8分)灞橋區(qū)教育局為了了解七年級(jí)學(xué)生參加社會(huì)實(shí)踐活動(dòng)情況,隨機(jī)抽取了鐵一中濱河學(xué)部分七年級(jí)學(xué)生2016﹣2017學(xué)年第一學(xué)期參加實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)繪制了兩幅統(tǒng)計(jì)圖,下面給出了兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息,回答下列問題:a=%,并補(bǔ)全條形圖.在本次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?如果該區(qū)共有七年級(jí)學(xué)生約9000人,請(qǐng)你估計(jì)活動(dòng)時(shí)間不少于6天的學(xué)生人數(shù)大約有多少?21.(10分)一次函數(shù)的圖象經(jīng)過點(diǎn)和點(diǎn),求一次函數(shù)的解析式.22.(10分)先化簡(jiǎn),再求值:,其中x為方程的根.23.(12分)圖1和圖2中,優(yōu)弧紙片所在⊙O的半徑為2,AB=2,點(diǎn)P為優(yōu)弧上一點(diǎn)(點(diǎn)P不與A,B重合),將圖形沿BP折疊,得到點(diǎn)A的對(duì)稱點(diǎn)A′.發(fā)現(xiàn):(1)點(diǎn)O到弦AB的距離是,當(dāng)BP經(jīng)過點(diǎn)O時(shí),∠ABA′=;(2)當(dāng)BA′與⊙O相切時(shí),如圖2,求折痕的長(zhǎng).拓展:把上圖中的優(yōu)弧紙片沿直徑MN剪裁,得到半圓形紙片,點(diǎn)P(不與點(diǎn)M,N重合)為半圓上一點(diǎn),將圓形沿NP折疊,分別得到點(diǎn)M,O的對(duì)稱點(diǎn)A′,O′,設(shè)∠MNP=α.(1)當(dāng)α=15°時(shí),過點(diǎn)A′作A′C∥MN,如圖3,判斷A′C與半圓O的位置關(guān)系,并說明理由;(2)如圖4,當(dāng)α=°時(shí),NA′與半圓O相切,當(dāng)α=°時(shí),點(diǎn)O′落在上.(3)當(dāng)線段NO′與半圓O只有一個(gè)公共點(diǎn)N時(shí),直接寫出β的取值范圍.24.(14分)如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,∠ABC的平分線交邊AC于點(diǎn)D,延長(zhǎng)BD至點(diǎn)E,且BD=2DE,連接AE.(1)求線段CD的長(zhǎng);(2)求△ADE的面積.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】

解:在這一組數(shù)據(jù)中6是出現(xiàn)次數(shù)最多的,故眾數(shù)是6;而將這組數(shù)據(jù)從小到大的順序排列3,4,5,6,6,處于中間位置的數(shù)是5,平均數(shù)是:(3+4+5+6+6)÷5=4.8,故選C.【點(diǎn)睛】本題考查眾數(shù);算術(shù)平均數(shù);中位數(shù).2、C【解析】【分析】根據(jù)各幾何體的主視圖可能出現(xiàn)的情況進(jìn)行討論即可作出判斷.【詳解】A.圓錐的主視圖可以是三角形也可能是圓,故不符合題意;B.圓柱的主視圖可能是長(zhǎng)方形也可能是圓,故不符合題意;C.球的主視圖只能是圓,故符合題意;D.正方體的主視圖是正方形或長(zhǎng)方形(中間有一豎),故不符合題意,故選C.【點(diǎn)睛】本題考查了簡(jiǎn)單幾何體的三視圖——主視圖,明確主視圖是從物體正面看得到的圖形是關(guān)鍵.3、A【解析】

設(shè)售價(jià)為x元時(shí),每星期盈利為6125元,那么每件利潤(rùn)為(x-40),原來售價(jià)為每件60元時(shí),每星期可賣出300件,所以現(xiàn)在可以賣出[300+20(60-x)]件,然后根據(jù)盈利為6120元即可列出方程解決問題.【詳解】解:設(shè)售價(jià)為x元時(shí),每星期盈利為6120元,

由題意得(x-40)[300+20(60-x)]=6120,

解得:x1=57,x2=1,

由已知,要多占市場(chǎng)份額,故銷售量要盡量大,即售價(jià)要低,故舍去x2=1.

∴每件商品應(yīng)降價(jià)60-57=3元.

故選:A.【點(diǎn)睛】本題考查了一元二次方程的應(yīng)用.此題找到關(guān)鍵描述語,找到等量關(guān)系準(zhǔn)確的列出方程是解決問題的關(guān)鍵.此題要注意判斷所求的解是否符合題意,舍去不合題意的解.4、D【解析】

為使游戲公平,要使凳子到三個(gè)人的距離相等,于是利用線段垂直平分線上的點(diǎn)到線段兩端的距離相等可知,要放在三邊中垂線的交點(diǎn)上.【詳解】∵三角形的三條垂直平分線的交點(diǎn)到中間的凳子的距離相等,∴凳子應(yīng)放在△ABC的三條垂直平分線的交點(diǎn)最適當(dāng).故選D.【點(diǎn)睛】本題主要考查了線段垂直平分線的性質(zhì)的應(yīng)用;利用所學(xué)的數(shù)學(xué)知識(shí)解決實(shí)際問題是一種能力,要注意培養(yǎng).想到要使凳子到三個(gè)人的距離相等是正確解答本題的關(guān)鍵.5、A【解析】

以DA為邊、點(diǎn)D為頂點(diǎn)在△ABC內(nèi)部作一個(gè)角等于∠B,角的另一邊與AB的交點(diǎn)即為所求作的點(diǎn).【詳解】如圖,點(diǎn)E即為所求作的點(diǎn).故選:A.【點(diǎn)睛】本題主要考查作圖-相似變換,根據(jù)相似三角形的判定明確過點(diǎn)D作一角等于∠B或∠C,并熟練掌握做一個(gè)角等于已知角的作法式解題的關(guān)鍵.6、B【解析】

實(shí)數(shù)分為有理數(shù),無理數(shù),有理數(shù)有分?jǐn)?shù)、整數(shù),無理數(shù)有根式下不能開方的,等,很容易選擇.【詳解】A、二次根2不能正好開方,即為無理數(shù),故本選項(xiàng)錯(cuò)誤,

B、無限循環(huán)小數(shù)為有理數(shù),符合;

C、為無理數(shù),故本選項(xiàng)錯(cuò)誤;

D、不能正好開方,即為無理數(shù),故本選項(xiàng)錯(cuò)誤;故選B.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是實(shí)數(shù)范圍內(nèi)的有理數(shù)的判斷,解題關(guān)鍵是從實(shí)際出發(fā)有理數(shù)有分?jǐn)?shù),自然數(shù)等,無理數(shù)有、根式下開不盡的從而得到了答案.7、B【解析】

先根據(jù)翻折變換的性質(zhì)得到△DEF≌△AEF,再根據(jù)等腰三角形的性質(zhì)及三角形外角的性質(zhì)可得到∠BED=CDF,設(shè)CD=1,CF=x,則CA=CB=2,再根據(jù)勾股定理即可求解.【詳解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,設(shè)CD=1,CF=x,則CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,∴sin∠BED=sin∠CDF=.故選B.【點(diǎn)睛】本題考查的是圖形翻折變換的性質(zhì)、等腰直角三角形的性質(zhì)、勾股定理、三角形外角的性質(zhì),涉及面較廣,但難易適中.8、C【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,逐一判斷即可.【詳解】解:連接OA、OM、ON、OP,根據(jù)旋轉(zhuǎn)的性質(zhì),點(diǎn)A的對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離與OA的長(zhǎng)度應(yīng)相等根據(jù)網(wǎng)格線和勾股定理可得:OA=,OM=,ON=,OP=,OQ=5∵OA=OM=ON=OQ≠OP∴則點(diǎn)A不經(jīng)過點(diǎn)P故選C.【點(diǎn)睛】此題考查的是旋轉(zhuǎn)的性質(zhì)和勾股定理,掌握旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等和用勾股定理求線段的長(zhǎng)是解決此題的關(guān)鍵.9、A【解析】分析:根據(jù)平行線性質(zhì)求出∠A,根據(jù)三角形內(nèi)角和定理得出∠2=180°∠1?∠A,代入求出即可.詳解:∵AB∥CD.∴∠A=∠3=40°,∵∠1=60°,∴∠2=180°∠1?∠A=80°,故選:A.點(diǎn)睛:本題考查了平行線的性質(zhì):兩直線平行,內(nèi)錯(cuò)角相等.三角形內(nèi)角和定理:三角形內(nèi)角和為180°.10、B【解析】

先把原式化為2x÷22y×23的形式,再根據(jù)同底數(shù)冪的乘法及除法法則進(jìn)行計(jì)算即可.【詳解】原式=2x÷22y×23,=2x﹣2y+3,=22,=1.故選:B.【點(diǎn)睛】本題考查的是同底數(shù)冪的乘法及除法運(yùn)算,根據(jù)題意把原式化為2x÷22y×23的形式是解答此題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1.【解析】試題分析:把這兩個(gè)方程相加可得1a-1b=9,兩邊同時(shí)除以1可得a-b=1.考點(diǎn):整體思想.12、①②③⑤【解析】

根據(jù)圖象可判斷①②③④⑤,由x=1時(shí),y<0,可判斷⑥【詳解】由圖象可得,a>0,c<0,b<0,△=b2﹣4ac>0,對(duì)稱軸為x=∴abc>0,4ac<b2,當(dāng)時(shí),y隨x的增大而減小.故①②⑤正確,∵∴2a+b>0,故③正確,由圖象可得頂點(diǎn)縱坐標(biāo)小于﹣2,則④錯(cuò)誤,當(dāng)x=1時(shí),y=a+b+c<0,故⑥錯(cuò)誤故答案為:①②③⑤【點(diǎn)睛】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號(hào)由拋物線開口方向、對(duì)稱軸、拋物線與y軸的交點(diǎn)拋物線與x軸交點(diǎn)的個(gè)數(shù)確定.13、x>1【解析】

分別求出兩個(gè)不等式的解集,再求其公共解集.【詳解】,解不等式①,得:x>1,解不等式②,得:x>-3,所以不等式組的解集為:x>1,故答案為:x>1.【點(diǎn)睛】本題考查一元一次不等式組的解法,屬于基礎(chǔ)題.求不等式組的解集,要遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.14、②③【解析】

根據(jù)平行線的性質(zhì)以及等邊三角形的性質(zhì)即可求出答案.【詳解】由題意可知:∠A=30°,∴AB=2BC,故①錯(cuò)誤;∵l1∥l2,∴∠CDB=∠1=60°.∵∠CBD=60°,∴△BCD是等邊三角形,故②正確;∵△BCD是等邊三角形,∴∠BCD=60°,∴∠ACD=∠A=30°,∴AD=CD=BD,故③正確.故答案為②③.【點(diǎn)睛】本題考查了平行的性質(zhì)以及等邊三角形的性質(zhì),解題的關(guān)鍵是熟練運(yùn)用平行線的性質(zhì),等邊三角形的性質(zhì),含30度角的直角三角形的性質(zhì),本題屬于中等題型.15、x<-2或x>1【解析】試題分析:根據(jù)函數(shù)圖象可得:當(dāng)時(shí),x<-2或x>1.考點(diǎn):函數(shù)圖象的性質(zhì)16、(128,0)【解析】

∵點(diǎn)A1坐標(biāo)為(1,0),且B1A1⊥x軸,∴B1的橫坐標(biāo)為1,將其橫坐標(biāo)代入直線解析式就可以求出B1的坐標(biāo),就可以求出A1B1的值,OA1的值,根據(jù)銳角三角函數(shù)值就可以求出∠xOB3的度數(shù),從而求出OB1的值,就可以求出OA2值,同理可以求出OB2、OB3…,從而尋找出點(diǎn)A2、A3…的坐標(biāo)規(guī)律,最后求出A8的坐標(biāo).【詳解】點(diǎn)坐標(biāo)為(1,0),

點(diǎn)的橫坐標(biāo)為1,且點(diǎn)在直線上

在中由勾股定理,得

,

在中,

.

.

.

.

故答案為.【點(diǎn)睛】本題是一道一次函數(shù)的綜合試題,也是一道規(guī)律試題,考查了直角三角形的性質(zhì),特別是所對(duì)的直角邊等于斜邊的一半的運(yùn)用,點(diǎn)的坐標(biāo)與函數(shù)圖象的關(guān)系.17、35°【解析】試題分析:∵∠AOB=70°,∴∠C=∠AOB=35°.∵AB=AC,∴∠ABC=∠C=35°.故答案為35°.考點(diǎn):圓周角定理.三、解答題(共7小題,滿分69分)18、(1);(2);(3)【解析】

(1)連接OB、OC,可證△OBC是等邊三角形,根據(jù)垂徑定理可得∠DOC等于30°,OA=OC可得∠ACO=∠CAO=α,利用三角形的內(nèi)角和定理即可表示出∠AOD的值.(2)連接OB、OC,可證△OBC是等邊三角形,根據(jù)垂徑定理可得∠DOB等于30°,因?yàn)辄c(diǎn)D為BC的中點(diǎn),則∠AOB=∠BOC=60°,所以∠AOD等于90°,根據(jù)OA=OB=2,在直角三角形中用三角函數(shù)及勾股定理即可求得OD、AD的長(zhǎng).(3)分兩種情況討論:兩圓外切,兩圓內(nèi)切.先根據(jù)兩圓相切時(shí)圓心距與兩圓半徑的關(guān)系,求出AD的長(zhǎng),再過O點(diǎn)作AE的垂線,利用勾股定理列出方程即可求解.【詳解】(1)如圖1:連接OB、OC.∵BC=AO∴OB=OC=BC∴△OBC是等邊三角形∴∠BOC=60°∵點(diǎn)D是BC的中點(diǎn)∴∠BOD=∵OA=OC∴=α∴∠AOD=180°-α-α-=150°-2α(2)如圖2:連接OB、OC、OD.由(1)可得:△OBC是等邊三角形,∠BOD=∵OB=2,∴OD=OB?cos=∵B為的中點(diǎn),∴∠AOB=∠BOC=60°∴∠AOD=90°根據(jù)勾股定理得:AD=(3)①如圖3.圓O與圓D相內(nèi)切時(shí):連接OB、OC,過O點(diǎn)作OF⊥AE∵BC是直徑,D是BC的中點(diǎn)∴以BC為直徑的圓的圓心為D點(diǎn)由(2)可得:OD=,圓D的半徑為1∴AD=設(shè)AF=x在Rt△AFO和Rt△DOF中,即解得:∴AE=②如圖4.圓O與圓D相外切時(shí):連接OB、OC,過O點(diǎn)作OF⊥AE∵BC是直徑,D是BC的中點(diǎn)∴以BC為直徑的圓的圓心為D點(diǎn)由(2)可得:OD=,圓D的半徑為1∴AD=在Rt△AFO和Rt△DOF中,即解得:∴AE=【點(diǎn)睛】本題主要考查圓的相關(guān)知識(shí):垂徑定理,圓與圓相切的條件,關(guān)鍵是能靈活運(yùn)用垂徑定理和勾股定理相結(jié)合思考問題,另外需注意圓相切要分內(nèi)切與外切兩種情況.19、1.【解析】

根據(jù)分式的化簡(jiǎn)法則:先算括號(hào)里的,再算乘除,最后算加減.對(duì)不同分母的先通分,按同分母分式加減法計(jì)算,且要把復(fù)雜的因式分解因式,最后約分,化簡(jiǎn)完后再代入求值,但是不能代入-1,0,1,保證分式有意義.【詳解】解:====當(dāng)x=2時(shí),原式==1.【點(diǎn)睛】本題考查分式的化簡(jiǎn)求值及分式成立的條件,掌握運(yùn)算法則準(zhǔn)確計(jì)算是本題的解題關(guān)鍵.20、(1)10,補(bǔ)圖見解析;(2)眾數(shù)是5,中位數(shù)是1;(3)活動(dòng)時(shí)間不少于1天的學(xué)生人數(shù)大約有5400人.【解析】

(1)用1減去其他天數(shù)所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出該扇形所對(duì)圓心角的度數(shù);根據(jù)1天的人數(shù)和所占的百分比求出總?cè)藬?shù),再乘以8天的人數(shù)所占的百分比,即可補(bǔ)全統(tǒng)計(jì)圖;(2)根據(jù)眾數(shù)和中位數(shù)的定義即可求出答案;(3)用總?cè)藬?shù)乘以活動(dòng)時(shí)間不少于1天的人數(shù)所占的百分比即可求出答案.【詳解】解:(1)扇形統(tǒng)計(jì)圖中a=1﹣5%﹣40%﹣20%﹣25%=10%,該扇形所對(duì)圓心角的度數(shù)為310°×10%=31°,參加社會(huì)實(shí)踐活動(dòng)的天數(shù)為8天的人數(shù)是:×10%=10(人),補(bǔ)圖如下:故答案為10;(2)抽樣調(diào)查中總?cè)藬?shù)為100人,結(jié)合條形統(tǒng)計(jì)圖可得:眾數(shù)是5,中位數(shù)是1.(3)根據(jù)題意得:9000×(25%+10%+5%+20%)=5400(人),活動(dòng)時(shí)間不少于1天的學(xué)生人數(shù)大約有5400人.【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。?1、y=2x+1.【解析】

直接把點(diǎn)A(﹣1,1),B(1,5)代入一次函數(shù)y=kx+b(k≠0),求出k、b的值即可.【詳解】∵一次函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點(diǎn)A(﹣1,1)和點(diǎn)B(1,5),∴,解得:.故一次函數(shù)的解析式為y=2x+1.【點(diǎn)睛】本題考查了待定系數(shù)法求一次函數(shù)的解析式,熟知待定系數(shù)法求一次函數(shù)解析式一般步驟是解答此題的關(guān)鍵.22、1【解析】

先將除式括號(hào)里面的通分后,將除法轉(zhuǎn)換成乘法,約分化簡(jiǎn).然后解一元二次方程,根據(jù)分式有意義的條件選擇合適的x值,代入求值.【詳解】解:原式=.解得,,∵時(shí),無意義,∴?。?dāng)時(shí),原式=.23、發(fā)現(xiàn):(1)1,60°;(2)2;拓展:(1)相切,理由詳見解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【解析】

發(fā)現(xiàn):(1)利用垂徑定理和勾股定理即可求出點(diǎn)O到AB的距離;利用銳角三角函數(shù)的定義及軸對(duì)稱性就可求出∠ABA′.(2)根據(jù)切線的性質(zhì)得到∠OBA′=90°,從而得到∠ABA′=120°,就可求出∠ABP,進(jìn)而求出∠OBP=30°.過點(diǎn)O作OG⊥BP,垂足為G,容易求出OG、BG的長(zhǎng),根據(jù)垂徑定理就可求出折痕的長(zhǎng).拓展:(1)過A'、O作A'H⊥MN于點(diǎn)H,OD⊥A'C于點(diǎn)D.用含30°角的直角三角形的性質(zhì)可得OD=A'H=A'N=MN=2可判定A′C與半圓相切;(2)當(dāng)NA′與半圓相切時(shí),可知ON⊥A′N,則可知α=45°,當(dāng)O′在時(shí),連接MO′,則可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;(3)根據(jù)點(diǎn)A′的位置不同得到線段NO′與半圓O只有一個(gè)公共點(diǎn)N時(shí)α的取值范圍是0°<α<30°或45°≤α<90°.【詳解】發(fā)現(xiàn):(1)過點(diǎn)O作OH⊥AB,垂足為H,如圖1所示,∵⊙O的半徑為2,AB=2,∴OH==在△BOH中,OH=1,BO=2∴∠ABO=30°∵圖形沿BP折疊,得到點(diǎn)A的對(duì)稱點(diǎn)A′.∴∠OBA′=∠ABO

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論