版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第=page11頁,共=sectionpages11頁2024年江蘇省徐州市邳州市運河中學中考數(shù)學一模試卷一、選擇題:本題共8小題,每小題3分,共24分。在每小題給出的選項中,只有一項是符合題目要求的。1.豐都正在創(chuàng)建全國文明城市,城市的英語單詞city的大寫字母是中心對稱的是A. B. C. D.2.下列事件是必然事件的是(
)A.地球自轉 B.明天下雨 C.時光倒流 D.冬天飄雪3.在“我的中國夢”演講比賽中,有5名學生參加決賽,他們決賽的最終成績各不相同.其中的一名學生想要知道自己能否進入前3名,不僅要了解自己的成績,還要了解這5名學生成績的(
)A.中位數(shù) B.眾數(shù) C.平均數(shù) D.方差4.實數(shù)a在數(shù)軸上對應的點如圖所示,則a、?a、?1的大小關系正確的是(
)A.?1<a<?a B.?5.下列計算正確的是(
)A.(a2)3=a6 B.6.比3大且比14小的整數(shù)可以是
(
)A.1 B.3 C.5 D.77.割圓術是我國古代數(shù)學家劉徽創(chuàng)造的一種求周長和面積的算法:隨著圓內接正多邊形邊數(shù)的增加,它的周長和面積越來越接近圓周長和圓面積,“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”.這一思想在數(shù)學領域中有廣泛的應用.例如:求3+3+3+?的值.則可以設xA.2 B.32 C.3 D.8.如圖,在平面直角坐標系中,拋物線y=?49x2+83x與x軸的正半軸交于點AA.24 B.25 C.30 D.36二、填空題:本題共10小題,每小題3分,共30分。9.四月楊絮漫天飛舞,楊絮纖維的直徑約為0.0000105m,該數(shù)值用科學記數(shù)法表示為______.10.函數(shù)y=1x?3中自變量x11.三角形的兩邊長分別為2和9,周長為偶數(shù),則第三邊長為______.12.若一個多邊形的每個外角均為40°,則這個多邊形的邊數(shù)為______.13.若拋物線y=(k?1)x2?14.如圖,已知AB//DE,∠ABC=75
15.如圖,在2×2的正方形網(wǎng)格紙中,每個小正方形的邊長均為1,點O,A,B為格點,即是小正方形的頂點,若將扇形OAB圍成一個圓錐,則這個圓錐的底面圓的半徑為______
16.如圖,在平面直角坐標系中,直線y=x+1與x軸、y軸分別交于點A,B,與反比例函數(shù)y=kx的圖象在第一象限交于點C,若AB=
17.如圖,以邊長為2的等邊△ABC頂點A為圓心、一定的長為半徑畫弧,恰好與BC邊相切,分別交AB,AC于D,E
18.如圖,在?ABCD中,∠B=60°,BC=2AB,將AB繞點A逆時針旋轉角α(0°
三、解答題:本題共8小題,共64分。解答應寫出文字說明,證明過程或演算步驟。19.(本小題8分)
計算:
(1)25+(20.(本小題8分)
(1)解方程組x+y=5321.(本小題8分)
今年我市新冠疫情在各地醫(yī)療隊的幫助下,得到有效控制,我市準備向某客運公司租用A、B兩種類型客車,陸續(xù)將支援隊護送離城,已知每輛A型客車的載客人數(shù)比每輛B型客車多10人,如果單獨租用A型客車護送900人,與單獨租用B型客車護送700人所用車輛數(shù)一樣多.(特別注明:本題中載客人數(shù)不考慮客車司機)
(1)問每輛A、B型客車分別可載多少人?
(2)某天,有630位支援人員需護送,客運公司根據(jù)需要,安排了A、B型汽車共16輛,每輛A型客車的租金為1200元,每輛B型客車的租金為1000元,總租金不超過22.(本小題8分)
如圖,在Rt△ABC中,∠A=90°,∠C=30°,BC=12.
(1)求作:以23.(本小題8分)
如圖,在△ABC中,D是邊BC上一點,以BD為直徑的⊙O經(jīng)過點A,且∠CAD=∠ABC.
(1)請判斷直線
24.(本小題8分)
某無人機興趣小組在操場上開展活動(如圖),此時無人機在離地面的D處,無人機測得操控者A的俯角為37°,測得點C處的俯角為45°.又經(jīng)過人工測量操控者A和教學樓BC距離為57米,若教學樓BC的高度為13米,求此時無人機距離地面的高度.(注:點A,B,C,D都在同一平面上.參考數(shù)據(jù):si25.(本小題8分)
已知二次函數(shù)y=x2+bx+c.
(1)當c=?2b?4時,此函數(shù)圖象與x軸有一個交點在y軸左側,求b的取值范圍;
(2)當b=1時,若存在實數(shù)x0,使得當x=26.(本小題8分)
(1)問題發(fā)現(xiàn):
如圖1,△ACB和△DCE均為等邊三角形,點A,D,E在同一直線上,連接BE.
①線段AD,BE之間的數(shù)量關系為______;
②∠AEB的度數(shù)為______.
(2)拓展探究:
如圖2,△ACB和△AED均為等腰直角三角形,∠ACB=∠AED=90°,點B,D,答案和解析1.【答案】B
【解析】解:選項A、C、D中的大寫字母都不能找到這樣的一個點,使圖形繞某一點旋轉180°后與原來的圖形重合,所以不是中心對稱圖形.
選項B中的大寫字母能找到這樣的一個點,使圖形繞某一點旋轉180°后與原來的圖形重合,所以是中心對稱圖形.
故選:B.
根據(jù)中心對稱圖形的概念判斷.把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形.
2.【答案】A
【解析】解:A、地球自轉是必然事件,符合題意;
B、明天下雨是隨機事件,不符合題意;
C、時光倒流是不可能事件,不符合題意;
D、冬天飄雪是隨機事件,不符合題意.
故選:A.
根據(jù)隨機事件的定義進行解答即可.
本題考查的是隨機事件,熟知在一定條件下,可能發(fā)生也可能不發(fā)生的事件,稱為隨機事件是解題的關鍵.3.【答案】A
【解析】解:因為5位進入決賽者的分數(shù)肯定是5名參賽選手中最高的,
而且5個不同的分數(shù)按從小到大排序后,中位數(shù)及中位數(shù)之前的共有3個數(shù),
故只要知道自己的分數(shù)和中位數(shù)就可以知道是否進入決賽了,
故選:A.
由于比賽取前3名進入決賽,共有5名選手參加,故應根據(jù)中位數(shù)的意義分析.
此題主要考查統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.4.【答案】B
【解析】解:由數(shù)軸可知,?1<0<a,且|?1|<|a|,
故a、?a、?1的大小關系為:5.【答案】A
【解析】解:A.(a2)3
=a2×3
=a6,
則A符合題意;
B.a6÷a2
=a6?2
=a4,
則B不符合題意;
C.a3?a4
=6.【答案】B
【解析】解:∵1<3<2,而3<14<4,
∴比3大且比14小的整數(shù)可以是2、37.【答案】B
【解析】解:∵1+13+132+133+…=1+13(1+13+132+18.【答案】A
【解析】解:連接OB,過C點作CM⊥OB于M點,過A點作AN⊥OB于N點,拋物線的對稱軸與x軸交于點D,如圖,
令y=0,得方程?49x2+83x=0,
解得:x1=0,x2=6,
∴A點坐標為(6,0),即OA=6,
將y=?49x2+83x配成頂點式得:y=?49(x?3)2+4,
∴B點坐標為(3,4),
∴BD=4,OD=3,
∵CM⊥OB,AN⊥OB,
∴∠BMC=∠ANO=90°,
根據(jù)拋物線對稱軸的性質可知BD⊥OA,
∴∠BDO=90°,
在Rt△BDO中,
利用勾股定理得OB=OD2+BD2=32+42=5,
∵∠9.【答案】1.05×【解析】解:0.0000105=1.05×10?5.
故答案為:1.05×10?5.
絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10?10.【答案】x≠【解析】解:根據(jù)題意得,x?3≠0,
解得x≠3.
故答案為:x≠3.
根據(jù)分母不等于0列式進行計算即可求解.
本題考查了函數(shù)自變量的取值范圍,函數(shù)自變量的范圍一般從三個方面考慮:
(111.【答案】9
【解析】解:設第三邊長x.
根據(jù)三角形的三邊關系,得7<x<11.
∴三角形的周長l的取值范圍是:18<l<22.
又∵三角形的周長為偶數(shù),因而滿足條件的數(shù)有20.
∴第三邊長為20?12.【答案】9
【解析】解:360°÷40°=9,
故答案為:9.
一個多邊形的外角和為360°13.【答案】k≤2且【解析】解:依題意,得k?1≠0Δ=(?2)2?4(k?1)≥0
解得
k≠1k≤2,
所以k的取值范圍為k≤2且k≠?1,
故答案為:k≤2且k≠1.
由題意可知k?1≠0,又因為二次函數(shù)y=14.【答案】55°【解析】解:如圖,延長ED與BC相交于點F,
∵AB//DE,
∴∠BFD=∠ABC=75°,
∴∠CFD=180°?75°=105°,15.【答案】12【解析】解:這個錐的底面圓的周長為:90360×2π×2=π;
∴這個錐的底面圓的半徑為:π÷16.【答案】2
【解析】【分析】
過點C作CH⊥x軸于點H,求出點C的坐標,將其代入y=kx,即可得解.
【解答】
解:如圖,過點C作CH⊥x軸于點H.
∵直線y=x+1與x軸、y軸分別交于點A,B,
∴A(?1,0),B(0,1),
∴OA=OB=1,
∵OB17.【答案】3【解析】解:由題意,以A為圓心、一定的長為半徑畫弧,恰好與BC邊相切,
設切點為F,連接AF,則AF⊥BC,
等邊△ABC中,AB=AC=BC=2,∠BAC=60°,
∴CF=B18.【答案】90°或180°或【解析】解:由題意可知,P點在以A為圓心,AB為半徑的圓上運動.
如圖:延長BA與⊙A交于P3,連接P3C.
∵P3C=2AB=BC,
又∵∠B=60°,
∴△P3BC為等邊三角形,
∴AC⊥AB.
在?ABCD中,AB/?/CD,AB=CD,
∴CD⊥AC.
∴∠ACD=90°,
∴當P在直線AC上時符合題意,
∴α1=90°,α2=270°.
連接P319.【答案】解:(1)原式=5+13?1+1
=513;
(【解析】(1)根據(jù)實數(shù)的運算法則計算即可;
(220.【答案】解:(1)x+y=5①3x+10y=30②,
②?①×3,得7y=15,
解得y=157,
把y=【解析】(1)方程組利用加減消元法求解即可;
(221.【答案】解:(1)設每輛A型客車可載x人,則每輛B型客車可載(x?10)人,
由題意得:900x=700x?10,
解得:x=45,
經(jīng)檢驗,x=45是原方程的解,且符合題意,
則x?10=35,
答:每輛A型客車可載45人,則每輛B型客車可載35人;
(2)設租A型客車a輛,則租b型客車(16?a)輛,
由題意得:1200a+1000(16?a)≤1780045a+35(16?a)≥630,
解得:7≤a≤9,
∵a為正整數(shù),
∴a取值為7,8,9,
∴有3種租車方案,
①租A型客車7輛,B型客車【解析】(1)設每輛A型客車可載x人,則每輛B型客車可載(x?10)人,由題意:單獨租用A型客車護送900人,與單獨租用B型客車護送700人所用車輛數(shù)一樣多,列出分式方程,解方程即可;
由(2)設租A型客車a輛,則租b型客車(16?a)輛,由題意:有22.【答案】解:(1)如圖,四邊形BDEF即為所求作的菱形.
(2)∵四邊形BDEF是菱形,
∴ED=BD,ED//BA,
∵∠A=90°,
【解析】(1)作BE平分∠ABC交AC于點E,作線段BE的垂直平分線交AB于點D,交BC于點F,連接DE,EF即可.
23.【答案】解:(1)直線AC是⊙O的切線,
理由如下:如圖,連接OA,
∵BD為⊙O的直徑,
∴∠BAD=90°=∠OAB+∠OAD,
∵OA=OB,
∴∠OAB=∠ABC,
又∵∠CAD=∠ABC,
∴∠OAB=∠CAD=∠A【解析】本題考查了切線的判定,圓的有關知識,勾股定理等知識,求圓的半徑是本題的關鍵.
(1)如圖,連接OA,由圓周角定理可得∠BAD=90°=∠OAB24.【答案】解:過點D作DE⊥AB于點E,過點C作CF⊥DE于點F,如圖所示:
則四邊形BCFE是矩形,
∴EF=BC=13米,CF=BE,
由題意得:AB=57米,∠DAE=30°,∠DCF【解析】過點D作DE⊥AB于點E,過點C作CF⊥DE于點25.【答案】解:(1)∵c=?2b?4,
∴y=x2+bx?2b?4,
令y=0,則x2+bx?2b?4=0,
解得:x1=2,x2=?b?2,
∵有一個交點在y軸左側,
∴?b?2<0,
∴b>?2;
(2)∵b=1,
∴函數(shù)表達式為y=x2+x+c,
∵存在實數(shù)x0,使x=x0時,y≤1,
∴當y取1時,c有最大值,
∴1=x02+x0+c,c=?x02?x0+1=?(x0+12)2+54,
∴當x0=?12時,c的值最大,最大值為54;
(3)∵b=?2m,c=0,∴y=x2【解析】(1)把c=?2b?4代入可得y=x2+bx?2b?4,然后令y=0,可得x1=2,x2=?26.【答案】AD=B【解析】解:(1)①∵△ACB和△DCE均為等邊三角形,
∴CA=CB=AB,CD=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 1.1 國家是什么(導學案) 高二政治 (統(tǒng)編版選擇性必修1)
- 印刷機械行業(yè)智能化發(fā)展的市場機遇分析考核試卷
- 2025年銷售傭金合同范本與業(yè)績激勵方案3篇
- 2025版木工行業(yè)培訓與認證服務合同范本4篇
- 2025年商業(yè)委托銷售協(xié)議
- 2025年合法住房公租房協(xié)議
- 二零二五年度駕校品牌推廣與市場拓展合作合同2篇
- 2025年度個人二手車轉讓及二手車增值服務合同3篇
- 二零二五年度林業(yè)苗木繁育基地承包合同4篇
- 二零二五年度集體產(chǎn)權房屋買賣合同樣本(含房屋產(chǎn)權調查及核實要求)
- 《醫(yī)院財務分析報告》課件
- 2025老年公寓合同管理制度
- 2024-2025學年人教版數(shù)學六年級上冊 期末綜合卷(含答案)
- 2024中國汽車后市場年度發(fā)展報告
- 感染性腹瀉的護理查房
- 天津市部分區(qū)2023-2024學年高二上學期期末考試 物理 含解析
- 《人工智能基礎》全套英語教學課件(共7章)
- 廢鐵收購廠管理制度
- 物品賠償單范本
- 《水和廢水監(jiān)測》課件
- 滬教版六年級數(shù)學下冊課件【全冊】
評論
0/150
提交評論