版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆湖北省鄂州市高考仿真模擬數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.五名志愿者到三個(gè)不同的單位去進(jìn)行幫扶,每個(gè)單位至少一人,則甲、乙兩人不在同一個(gè)單位的概率為()A. B. C. D.2.已知點(diǎn)是拋物線的對(duì)稱軸與準(zhǔn)線的交點(diǎn),點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在拋物線上且滿足,若取得最大值時(shí),點(diǎn)恰好在以為焦點(diǎn)的橢圓上,則橢圓的離心率為()A. B. C. D.3.函數(shù)的定義域?yàn)?,集合,則()A. B. C. D.4.下列函數(shù)中既關(guān)于直線對(duì)稱,又在區(qū)間上為增函數(shù)的是()A.. B.C. D.5.《聊齋志異》中有這樣一首詩(shī):“挑水砍柴不堪苦,請(qǐng)歸但求穿墻術(shù).得訣自詡無(wú)所阻,額上墳起終不悟.”在這里,我們稱形如以下形式的等式具有“穿墻術(shù)”:,,,,則按照以上規(guī)律,若具有“穿墻術(shù)”,則()A.48 B.63 C.99 D.1206.已知三棱柱()A. B. C. D.7.已知點(diǎn)P在橢圓τ:=1(a>b>0)上,點(diǎn)P在第一象限,點(diǎn)P關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為A,點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為Q,設(shè),直線AD與橢圓τ的另一個(gè)交點(diǎn)為B,若PA⊥PB,則橢圓τ的離心率e=()A. B. C. D.8.費(fèi)馬素?cái)?shù)是法國(guó)大數(shù)學(xué)家費(fèi)馬命名的,形如的素?cái)?shù)(如:)為費(fèi)馬索數(shù),在不超過(guò)30的正偶數(shù)中隨機(jī)選取一數(shù),則它能表示為兩個(gè)不同費(fèi)馬素?cái)?shù)的和的概率是()A. B. C. D.9.已知集合,則等于()A. B. C. D.10.已知函數(shù),為的零點(diǎn),為圖象的對(duì)稱軸,且在區(qū)間上單調(diào),則的最大值是()A. B. C. D.11.在我國(guó)傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個(gè)物質(zhì)類別,在五者之間,有一種“相生”的關(guān)系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個(gè),這二者具有相生關(guān)系的概率是()A.0.2 B.0.5 C.0.4 D.0.812.若x,y滿足約束條件的取值范圍是A.[0,6] B.[0,4] C.[6, D.[4,二、填空題:本題共4小題,每小題5分,共20分。13.甲,乙兩隊(duì)參加關(guān)于“一帶一路”知識(shí)競(jìng)賽,甲隊(duì)有編號(hào)為1,2,3的三名運(yùn)動(dòng)員,乙隊(duì)有編號(hào)為1,2,3,4的四名運(yùn)動(dòng)員,若兩隊(duì)各出一名隊(duì)員進(jìn)行比賽,則出場(chǎng)的兩名運(yùn)動(dòng)員編號(hào)相同的概率為_(kāi)_____.14.如圖,在長(zhǎng)方體中,,E,F(xiàn),G分別為的中點(diǎn),點(diǎn)P在平面ABCD內(nèi),若直線平面EFG,則線段長(zhǎng)度的最小值是________________.15.在四面體中,與都是邊長(zhǎng)為2的等邊三角形,且平面平面,則該四面體外接球的體積為_(kāi)______.16.已知非零向量,滿足,且,則與的夾角為_(kāi)___________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,兩座建筑物AB,CD的底部都在同一個(gè)水平面上,且均與水平面垂直,它們的高度分別是10m和20m,從建筑物AB的頂部A看建筑物CD的視角∠CAD=60°.(1)求BC的長(zhǎng)度;(2)在線段BC上取一點(diǎn)P(點(diǎn)P與點(diǎn)B,C不重合),從點(diǎn)P看這兩座建筑物的視角分別為∠APB=α,∠DPC=β,問(wèn)點(diǎn)P在何處時(shí),α+β最???18.(12分)移動(dòng)支付(支付寶及微信支付)已經(jīng)漸漸成為人們購(gòu)物消費(fèi)的一種支付方式,為調(diào)查市民使用移動(dòng)支付的年齡結(jié)構(gòu),隨機(jī)對(duì)100位市民做問(wèn)卷調(diào)查得到列聯(lián)表如下:(1)將上列聯(lián)表補(bǔ)充完整,并請(qǐng)說(shuō)明在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為支付方式與年齡是否有關(guān)?(2)在使用移動(dòng)支付的人群中采用分層抽樣的方式抽取10人做進(jìn)一步的問(wèn)卷調(diào)查,從這10人隨機(jī)中選出3人頒發(fā)參與獎(jiǎng)勵(lì),設(shè)年齡都低于35歲(含35歲)的人數(shù)為,求的分布列及期望.(參考公式:(其中)19.(12分)如圖,為等腰直角三角形,,D為AC上一點(diǎn),將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.(1)證明:;(2)若,求二面角的余弦值.20.(12分)某校共有學(xué)生2000人,其中男生900人,女生1100人,為了調(diào)查該校學(xué)生每周平均體育鍛煉時(shí)間,采用分層抽樣的方法收集該校100名學(xué)生每周平均體育鍛煉時(shí)間(單位:小時(shí)).(1)應(yīng)抽查男生與女生各多少人?(2)根據(jù)收集100人的樣本數(shù)據(jù),得到學(xué)生每周平均體育鍛煉時(shí)間的頻率分布表:時(shí)間(小時(shí))[0,1](1,2](2,3](3,4](4,5](5,6]頻率0.050.200.300.250.150.05若在樣本數(shù)據(jù)中有38名男學(xué)生平均每周課外體育鍛煉時(shí)間超過(guò)2小時(shí),請(qǐng)完成每周平均體育鍛煉時(shí)間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時(shí)間與性別有關(guān)”?男生女生總計(jì)每周平均體育鍛煉時(shí)間不超過(guò)2小時(shí)每周平均體育鍛煉時(shí)間超過(guò)2小時(shí)總計(jì)附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.87921.(12分)已知點(diǎn)P在拋物線上,且點(diǎn)P的橫坐標(biāo)為2,以P為圓心,為半徑的圓(O為原點(diǎn)),與拋物線C的準(zhǔn)線交于M,N兩點(diǎn),且.(1)求拋物線C的方程;(2)若拋物線的準(zhǔn)線與y軸的交點(diǎn)為H.過(guò)拋物線焦點(diǎn)F的直線l與拋物線C交于A,B,且,求的值.22.(10分)如圖,已知四棱錐,平面,底面為矩形,,為的中點(diǎn),.(1)求線段的長(zhǎng).(2)若為線段上一點(diǎn),且,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
三個(gè)單位的人數(shù)可能為2,2,1或3,1,1,求出甲、乙兩人在同一個(gè)單位的概率,利用互為對(duì)立事件的概率和為1即可解決.【詳解】由題意,三個(gè)單位的人數(shù)可能為2,2,1或3,1,1;基本事件總數(shù)有種,若為第一種情況,且甲、乙兩人在同一個(gè)單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個(gè)單位,共有種,故甲、乙兩人在同一個(gè)單位的概率為,故甲、乙兩人不在同一個(gè)單位的概率為.故選:D.【點(diǎn)睛】本題考查古典概型的概率公式的計(jì)算,涉及到排列與組合的應(yīng)用,在正面情況較多時(shí),可以先求其對(duì)立事件,即甲、乙兩人在同一個(gè)單位的概率,本題有一定難度.2、B【解析】
設(shè),利用兩點(diǎn)間的距離公式求出的表達(dá)式,結(jié)合基本不等式的性質(zhì)求出的最大值時(shí)的點(diǎn)坐標(biāo),結(jié)合橢圓的定義以及橢圓的離心率公式求解即可.【詳解】設(shè),因?yàn)槭菕佄锞€的對(duì)稱軸與準(zhǔn)線的交點(diǎn),點(diǎn)為拋物線的焦點(diǎn),所以,則,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí),,點(diǎn)在以為焦點(diǎn)的橢圓上,,由橢圓的定義得,所以橢圓的離心率,故選B.【點(diǎn)睛】本題主要考查橢圓的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個(gè)重點(diǎn)也是難點(diǎn),一般求離心率有以下幾種情況:①直接求出,從而求出;②構(gòu)造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來(lái)求解.3、A【解析】
根據(jù)函數(shù)定義域得集合,解對(duì)數(shù)不等式得到集合,然后直接利用交集運(yùn)算求解.【詳解】解:由函數(shù)得,解得,即;又,解得,即,則.故選:A.【點(diǎn)睛】本題考查了交集及其運(yùn)算,考查了函數(shù)定義域的求法,是基礎(chǔ)題.4、C【解析】
根據(jù)函數(shù)的對(duì)稱性和單調(diào)性的特點(diǎn),利用排除法,即可得出答案.【詳解】A中,當(dāng)時(shí),,所以不關(guān)于直線對(duì)稱,則錯(cuò)誤;B中,,所以在區(qū)間上為減函數(shù),則錯(cuò)誤;D中,,而,則,所以不關(guān)于直線對(duì)稱,則錯(cuò)誤;故選:C.【點(diǎn)睛】本題考查函數(shù)基本性質(zhì),根據(jù)函數(shù)的解析式判斷函數(shù)的對(duì)稱性和單調(diào)性,屬于基礎(chǔ)題.5、C【解析】
觀察規(guī)律得根號(hào)內(nèi)分母為分子的平方減1,從而求出n.【詳解】解:觀察各式發(fā)現(xiàn)規(guī)律,根號(hào)內(nèi)分母為分子的平方減1所以故選:C.【點(diǎn)睛】本題考查了歸納推理,發(fā)現(xiàn)總結(jié)各式規(guī)律是關(guān)鍵,屬于基礎(chǔ)題.6、C【解析】因?yàn)橹比庵校珹B=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過(guò)底面ABC的截面圓的直徑.取BC中點(diǎn)D,則OD⊥底面ABC,則O在側(cè)面BCC1B1內(nèi),矩形BCC1B1的對(duì)角線長(zhǎng)即為球直徑,所以2R==13,即R=7、C【解析】
設(shè),則,,,設(shè),根據(jù)化簡(jiǎn)得到,得到答案.【詳解】設(shè),則,,,則,設(shè),則,兩式相減得到:,,,即,,,故,即,故,故.故選:.【點(diǎn)睛】本題考查了橢圓的離心率,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.8、B【解析】
基本事件總數(shù),能表示為兩個(gè)不同費(fèi)馬素?cái)?shù)的和只有,,,共有個(gè),根據(jù)古典概型求出概率.【詳解】在不超過(guò)的正偶數(shù)中隨機(jī)選取一數(shù),基本事件總數(shù)能表示為兩個(gè)不同費(fèi)馬素?cái)?shù)的和的只有,,,共有個(gè)則它能表示為兩個(gè)不同費(fèi)馬素?cái)?shù)的和的概率是本題正確選項(xiàng):【點(diǎn)睛】本題考查概率的求法,考查列舉法解決古典概型問(wèn)題,是基礎(chǔ)題.9、C【解析】
先化簡(jiǎn)集合A,再與集合B求交集.【詳解】因?yàn)?,,所?故選:C【點(diǎn)睛】本題主要考查集合的基本運(yùn)算以及分式不等式的解法,屬于基礎(chǔ)題.10、B【解析】
由題意可得,且,故有①,再根據(jù),求得②,由①②可得的最大值,檢驗(yàn)的這個(gè)值滿足條件.【詳解】解:函數(shù),,為的零點(diǎn),為圖象的對(duì)稱軸,,且,、,,即為奇數(shù)①.在,單調(diào),,②.由①②可得的最大值為1.當(dāng)時(shí),由為圖象的對(duì)稱軸,可得,,故有,,滿足為的零點(diǎn),同時(shí)也滿足滿足在上單調(diào),故為的最大值,故選:B.【點(diǎn)睛】本題主要考查正弦函數(shù)的圖象的特征,正弦函數(shù)的周期性以及它的圖象的對(duì)稱性,屬于中檔題.11、B【解析】
利用列舉法,結(jié)合古典概型概率計(jì)算公式,計(jì)算出所求概率.【詳解】從五行中任取兩個(gè),所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關(guān)系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點(diǎn)睛】本小題主要考查古典概型的計(jì)算,屬于基礎(chǔ)題.12、D【解析】解:x、y滿足約束條件,表示的可行域如圖:目標(biāo)函數(shù)z=x+2y經(jīng)過(guò)C點(diǎn)時(shí),函數(shù)取得最小值,由解得C(2,1),目標(biāo)函數(shù)的最小值為:4目標(biāo)函數(shù)的范圍是[4,+∞).故選D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
出場(chǎng)運(yùn)動(dòng)員編號(hào)相同的事件顯然有3種,計(jì)算出總的基本事件數(shù),由古典概型概率計(jì)算公式求得答案.【詳解】甲隊(duì)有編號(hào)為1,2,3的三名運(yùn)動(dòng)員,乙隊(duì)有編號(hào)為1,2,3,4的四名運(yùn)動(dòng)員,出場(chǎng)的兩名運(yùn)動(dòng)員編號(hào)相同的事件數(shù)為3,出現(xiàn)的基本事件總數(shù),則出場(chǎng)的兩名運(yùn)動(dòng)員編號(hào)相同的概率為.故答案為:【點(diǎn)睛】本題考查求古典概率的概率問(wèn)題,屬于基礎(chǔ)題.14、【解析】
如圖,連接,證明平面平面EFG.因?yàn)橹本€平面EFG,所以點(diǎn)P在直線AC上.當(dāng)時(shí).線段的長(zhǎng)度最小,再求此時(shí)的得解.【詳解】如圖,連接,因?yàn)镋,F(xiàn),G分別為AB,BC,的中點(diǎn),所以,平面,則平面.因?yàn)椋酝淼闷矫?,?所以平面平面EFG.因?yàn)橹本€平面EFG,所以點(diǎn)P在直線AC上.在中,,故當(dāng)時(shí).線段的長(zhǎng)度最小,最小值為.故答案為:【點(diǎn)睛】本題主要考查空間位置關(guān)系的證明,考查立體幾何中的軌跡問(wèn)題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.15、【解析】
先確定球心的位置,結(jié)合勾股定理可求球的半徑,進(jìn)而可得球的面積.【詳解】取的外心為,設(shè)為球心,連接,則平面,取的中點(diǎn),連接,,過(guò)做于點(diǎn),易知四邊形為矩形,連接,,設(shè),.連接,則,,三點(diǎn)共線,易知,所以,.在和中,,,即,,所以,,得.所以.【點(diǎn)睛】本題主要考查幾何體的外接球問(wèn)題,外接球的半徑的求解一般有兩個(gè)思路:一是確定球心位置,利用勾股定理求解半徑;二是利用熟悉的模型求解半徑,比如長(zhǎng)方體外接球半徑是其對(duì)角線的一半.16、(或?qū)懗桑窘馕觥?/p>
設(shè)與的夾角為,通過(guò),可得,化簡(jiǎn)整理可求出,從而得到答案.【詳解】設(shè)與的夾角為可得,故,將代入可得得到,于是與的夾角為.故答案為:.【點(diǎn)睛】本題主要考查向量的數(shù)量積運(yùn)算,向量垂直轉(zhuǎn)化為數(shù)量積為0是解決本題的關(guān)鍵,意在考查學(xué)生的轉(zhuǎn)化能力,分析能力及計(jì)算能力.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)當(dāng)BP為cm時(shí),α+β取得最小值.【解析】
(1)作AE⊥CD,垂足為E,則CE=10,DE=10,設(shè)BC=x,根據(jù)得到,解得答案.(2)設(shè)BP=t,則,故,設(shè),求導(dǎo)得到函數(shù)單調(diào)性,得到最值.【詳解】(1)作AE⊥CD,垂足為E,則CE=10,DE=10,設(shè)BC=x,則,化簡(jiǎn)得,解之得,或(舍),(2)設(shè)BP=t,則,,設(shè),,令f'(t)=0,因?yàn)?,得,?dāng)時(shí),f'(t)<0,f(t)是減函數(shù);當(dāng)時(shí),f'(t)>0,f(t)是增函數(shù),所以,當(dāng)時(shí),f(t)取得最小值,即tan(α+β)取得最小值,因?yàn)楹愠闪ⅲ詅(t)<0,所以tan(α+β)<0,,因?yàn)閥=tanx在上是增函數(shù),所以當(dāng)時(shí),α+β取得最小值.【點(diǎn)睛】本題考查了三角恒等變換,利用導(dǎo)數(shù)求最值,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.18、(1)列聯(lián)表見(jiàn)解析,在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為支付方式與年齡有關(guān);(2)分布列見(jiàn)解析,期望為.【解析】
(1)根據(jù)題中所給的條件補(bǔ)全列聯(lián)表,根據(jù)列聯(lián)表求出觀測(cè)值,把觀測(cè)值同臨界值進(jìn)行比較,得到能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為支付方式與年齡有關(guān).(2)首先確定的取值,求出相應(yīng)的概率,可得分布列和數(shù)學(xué)期望.【詳解】(1)根據(jù)題意及列聯(lián)表可得完整的列聯(lián)表如下:35歲以下(含35歲)35歲以上合計(jì)使用移動(dòng)支付401050不使用移動(dòng)支付104050合計(jì)5050100根據(jù)公式可得,所以在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為支付方式與年齡有關(guān).(2)根據(jù)分層抽樣,可知35歲以下(含35歲)的人數(shù)為8人,35歲以上的有2人,所以獲得獎(jiǎng)勵(lì)的35歲以下(含35歲)的人數(shù)為,則的可能為1,2,3,且,,,其分布列為123.【點(diǎn)睛】獨(dú)立性檢驗(yàn)依據(jù)的值結(jié)合附表數(shù)據(jù)進(jìn)行判斷,另外,離散型隨機(jī)變量的分布列,在求解的過(guò)程中,注意變量的取值以及對(duì)應(yīng)的概率要計(jì)算正確,注意離散型隨機(jī)變量的期望公式的使用,屬于中檔題目.19、(1)見(jiàn)解析;(2)【解析】
(1)由折疊過(guò)程知與平面垂直,得,再取中點(diǎn),可證與平面垂直,得,從而可得線面垂直,再得線線垂直;(2)由已知得為中點(diǎn),以為原點(diǎn),所在直線為軸,在平面內(nèi)過(guò)作的垂線為軸建立空間直角坐標(biāo)系,由已知求出線段長(zhǎng),得出各點(diǎn)坐標(biāo),用平面的法向量計(jì)算二面角的余弦.【詳解】(1)易知與平面垂直,∴,連接,取中點(diǎn),連接,由得,,∴平面,平面,∴,又,∴平面,∴;(2)由,知是中點(diǎn),令,則,由,,∴,解得,故.以為原點(diǎn),所在直線為軸,在平面內(nèi)過(guò)作的垂線為軸建立空間直角坐標(biāo)系,如圖,則,,,設(shè)平面的法向量為,則,取,則.又易知平面的一個(gè)法向量為,.∴二面角的余弦值為.【點(diǎn)睛】本題考查證明線線垂直,考查用空間向量法求二面角.證線線垂直,一般先證線面垂直,而證線面垂直又要證線線垂直,注意線線垂直、線面垂直及面面垂直的轉(zhuǎn)化.求空間角,常用方法就是建立空間直角坐標(biāo)系,用空間向量法求空間角.20、(1)男生人數(shù)為人,女生人數(shù)55人.(2)列聯(lián)表答案見(jiàn)解析,有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時(shí)間與性別有關(guān).【解析】
(1)求出男女比例,按比例分配即可;(2)根據(jù)題意結(jié)合頻率分布表,先求出二聯(lián)表中數(shù)值,再結(jié)合公式計(jì)算,利用表格數(shù)據(jù)對(duì)比判斷即可【詳解】(1)因?yàn)槟猩藬?shù):女生人數(shù)=900:1100=9:11,所以男生人數(shù)為,女生人數(shù)100﹣45=55人,(2)由頻率頻率直方圖可知學(xué)生每周平均體育鍛煉時(shí)間超過(guò)2小時(shí)的人數(shù)為:(1×0.3+1×0.25+1×0.15+1×0.05)×100=75人,每周平均體育鍛煉時(shí)間超過(guò)2小時(shí)的女生人
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 展會(huì)宣傳推廣合同(2篇)
- 小賣鋪?zhàn)赓U合同(2篇)
- 2025年度建筑密封硅酮膠招標(biāo)采購(gòu)合同3篇
- 二零二五年度智慧城市物聯(lián)網(wǎng)設(shè)備采購(gòu)合同2篇
- 二零二五版果園果樹(shù)種植技術(shù)指導(dǎo)與承包合同3篇
- 2024版短期貸款合同范例3篇
- 二零二五年度消防工程監(jiān)理合同2篇
- 二零二五年度建筑工程項(xiàng)目招投標(biāo)與合同履約擔(dān)保服務(wù)合同3篇
- 二零二五版股權(quán)代持糾紛調(diào)解與風(fēng)險(xiǎn)防范合同5篇
- 二零二五年度不動(dòng)產(chǎn)權(quán)屬轉(zhuǎn)移擔(dān)保合同3篇
- 薪酬與福利管理實(shí)務(wù)-習(xí)題答案 第五版
- 廢舊物資處置申請(qǐng)表
- GB/T 37234-2018文件鑒定通用規(guī)范
- GB/T 31888-2015中小學(xué)生校服
- 質(zhì)量檢查考核辦法
- 云南省普通初中學(xué)生成長(zhǎng)記錄-基本素質(zhì)發(fā)展初一-初三
- 2023年系統(tǒng)性硬化病診斷及診療指南
- 外科醫(yī)師手術(shù)技能評(píng)分標(biāo)準(zhǔn)
- 《英語(yǔ)教師職業(yè)技能訓(xùn)練簡(jiǎn)明教程》全冊(cè)配套優(yōu)質(zhì)教學(xué)課件
- 采購(gòu)控制程序
- 六年級(jí)上冊(cè)數(shù)學(xué)簡(jiǎn)便計(jì)算題200題專項(xiàng)練習(xí)
評(píng)論
0/150
提交評(píng)論