版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省龍巖市上杭三中學2023-2024學年中考數(shù)學最后一模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,將△ABC沿著DE剪成一個小三角形ADE和一個四邊形D'E'CB,若DE∥BC,四邊形D'E'CB各邊的長度如圖所示,則剪出的小三角形ADE應是()A. B. C. D.2.我國第一艘航母“遼寧艦”最大排水量為67500噸,用科學記數(shù)法表示這個數(shù)字是A.6.75×103噸 B.67.5×103噸 C.6.75×104噸 D.6.75×105噸3.一個多邊形的邊數(shù)由原來的3增加到n時(n>3,且n為正整數(shù)),它的外角和()A.增加(n﹣2)×180° B.減?。╪﹣2)×180°C.增加(n﹣1)×180° D.沒有改變4.如圖1,在△ABC中,D、E分別是AB、AC的中點,將△ADE沿線段DE向下折疊,得到圖1.下列關于圖1的四個結論中,不一定成立的是()A.點A落在BC邊的中點 B.∠B+∠1+∠C=180°C.△DBA是等腰三角形 D.DE∥BC5.如圖,將一塊含有30°角的直角三角板的兩個頂點放在長方形直尺的一組對邊上,如果∠1=30°,那么∠2的度數(shù)為()A.30° B.40° C.50° D.60°6.由一些大小相同的小正方體搭成的幾何體的俯視圖如圖所示,其中正方形中的數(shù)字表示該位置上的小正方體的個數(shù),那么該幾何體的主視圖是()A. B. C. D.7.計算(﹣3)﹣(﹣6)的結果等于()A.3B.﹣3C.9D.188.a≠0,函數(shù)y=與y=﹣ax2+a在同一直角坐標系中的大致圖象可能是()A. B.C. D.9.若正六邊形的邊長為6,則其外接圓半徑為()A.3 B.3 C.3 D.610.下列交通標志是中心對稱圖形的為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.不等式組的整數(shù)解是_____.12.有一組數(shù)據(jù):3,a,4,6,7,它們的平均數(shù)是5,則a=_____,這組數(shù)據(jù)的方差是_____.13.每一層三角形的個數(shù)與層數(shù)的關系如圖所示,則第2019層的三角形個數(shù)為_____.14.小紅沿坡比為1:的斜坡上走了100米,則她實際上升了_____米.15.某一時刻,測得一根高1.5m的竹竿在陽光下的影長為2.5m.同時測得旗桿在陽光下的影長為30m,則旗桿的高為__________m.16..如圖,圓錐側面展開得到扇形,此扇形半徑CA=6,圓心角∠ACB=120°,則此圓錐高OC的長度是_______.三、解答題(共8題,共72分)17.(8分)為加快城鄉(xiāng)對接,建設美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進行改建,如圖,A,B兩地之間有一座山.汽車原來從A地到B地需途經C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛,已知BC=80千米,∠A=45°,∠B=30°.開通隧道前,汽車從A地到B地要走多少千米?開通隧道后,汽車從A地到B地可以少走多少千米?(結果保留根號)18.(8分)解方程:(1)x2﹣7x﹣18=0(2)3x(x﹣1)=2﹣2x19.(8分)如圖,某人站在樓頂觀測對面的筆直的旗桿AB,已知觀測點C到旗桿的距離CE=8m,測得旗桿的頂部A的仰角∠ECA=30°,旗桿底部B的俯角∠ECB=45°,求旗桿AB的髙.20.(8分)計算:(1-n)0-|3-2|+(-)-1+4cos30°.21.(8分)如圖,在△ABC中,AB=AC=4,∠A=36°.在AC邊上確定點D,使得△ABD與△BCD都是等腰三角形,并求BC的長(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)22.(10分)如圖,已知∠ABC=90°,AB=BC.直線l與以BC為直徑的圓O相切于點C.點F是圓O上異于B、C的動點,直線BF與l相交于點E,過點F作AF的垂線交直線BC于點D.如果BE=15,CE=9,求EF的長;證明:①△CDF∽△BAF;②CD=CE;探求動點F在什么位置時,相應的點D位于線段BC的延長線上,且使BC=CD,請說明你的理由.23.(12分)小張騎自行車勻速從甲地到乙地,在途中因故停留了一段時間后,仍按原速騎行,小李騎摩托車比小張晚出發(fā)一段時間,以800米/分的速度勻速從乙地到甲地,兩人距離乙地的路程y(米)與小張出發(fā)后的時間x(分)之間的函數(shù)圖象如圖所示.求小張騎自行車的速度;求小張停留后再出發(fā)時y與x之間的函數(shù)表達式;求小張與小李相遇時x的值.24.如圖,在△ABC中,∠ABC=90°,以AB為直徑的⊙O與AC邊交于點D,過點D的直線交BC邊于點E,∠BDE=∠A.判斷直線DE與⊙O的位置關系,并說明理由.若⊙O的半徑R=5,tanA=,求線段CD的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
利用相似三角形的性質即可判斷.【詳解】設AD=x,AE=y(tǒng),∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴x=9,y=12,故選:C.【點睛】考查平行線的性質,相似三角形的判定和性質等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.2、C【解析】試題分析:根據(jù)科學記數(shù)法的定義,科學記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數(shù)是大于或等于1還是小于1.當該數(shù)大于或等于1時,n為它的整數(shù)位數(shù)減1;當該數(shù)小于1時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點前的1個0).67500一共5位,從而67500=6.75×2.故選C.3、D【解析】
根據(jù)多邊形的外角和等于360°,與邊數(shù)無關即可解答.【詳解】∵多邊形的外角和等于360°,與邊數(shù)無關,∴一個多邊形的邊數(shù)由3增加到n時,其外角度數(shù)的和還是360°,保持不變.故選D.【點睛】本題考查了多邊形的外角和,熟知多邊形的外角和等于360°是解題的關鍵.4、A【解析】
根據(jù)折疊的性質明確對應關系,易得∠A=∠1,DE是△ABC的中位線,所以易得B、D答案正確,D是AB中點,所以DB=DA,故C正確.【詳解】根據(jù)題意可知DE是三角形ABC的中位線,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA是等腰三角形.故只有A錯,BA≠CA.故選A.【點睛】主要考查了三角形的內角和外角之間的關系以及等腰三角形的性質.還涉及到翻折變換以及中位線定理的運用.(1)三角形的外角等于與它不相鄰的兩個內角和.(1)三角形的內角和是180度.求角的度數(shù)常常要用到“三角形的內角和是180°這一隱含的條件.通過折疊變換考查正多邊形的有關知識,及學生的邏輯思維能力.解答此類題最好動手操作.5、D【解析】如圖,因為,∠1=30°,∠1+∠3=60°,所以∠3=30°,因為AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故選D.6、A【解析】
由三視圖的俯視圖,從左到右依次找到最高層數(shù),再由主視圖和俯視圖之間的關系可知,最高層高度即為主視圖高度.【詳解】解:幾何體從左到右的最高層數(shù)依次為1,2,3,所以主視圖從左到右的層數(shù)應該為1,2,3,故選A.【點睛】本題考查了三視圖的簡單性質,屬于簡單題,熟悉三視圖的概念,主視圖和俯視圖之間的關系是解題關鍵.7、A【解析】原式=?3+6=3,故選A8、D【解析】
分a>0和a<0兩種情況分類討論即可確定正確的選項【詳解】當a>0時,函數(shù)y=的圖象位于一、三象限,y=﹣ax2+a的開口向下,交y軸的正半軸,沒有符合的選項,當a<0時,函數(shù)y=的圖象位于二、四象限,y=﹣ax2+a的開口向上,交y軸的負半軸,D選項符合;故選D.【點睛】本題考查了反比例函數(shù)的圖象及二次函數(shù)的圖象的知識,解題的關鍵是根據(jù)比例系數(shù)的符號確定其圖象的位置,難度不大.9、D【解析】
連接正六邊形的中心和各頂點,得到六個全等的正三角形,于是可知正六邊形的邊長等于正三角形的邊長,為正六邊形的外接圓半徑.【詳解】如圖為正六邊形的外接圓,ABCDEF是正六邊形,∴∠AOF=10°,∵OA=OF,∴△AOF是等邊三角形,∴OA=AF=1.所以正六邊形的外接圓半徑等于邊長,即其外接圓半徑為1.故選D.【點睛】本題考查了正六邊形的外接圓的知識,解題的關鍵是畫出圖形,找出線段之間的關系.10、C【解析】
根據(jù)中心對稱圖形的定義即可解答.【詳解】解:A、屬于軸對稱圖形,不是中心對稱的圖形,不合題意;
B、是中心對稱的圖形,但不是交通標志,不符合題意;
C、屬于軸對稱圖形,屬于中心對稱的圖形,符合題意;
D、不是中心對稱的圖形,不合題意.
故選C.【點睛】本題考查中心對稱圖形的定義:繞對稱中心旋轉180度后所得的圖形與原圖形完全重合.二、填空題(本大題共6個小題,每小題3分,共18分)11、﹣1、0、1【解析】
求出每個不等式的解集,根據(jù)找不等式組解集的規(guī)律找出不等式組的解集,即可得出答案.【詳解】,解不等式得:,解不等式得:,不等式組的解集為,不等式組的整數(shù)解為-1,0,1.故答案為:-1,0,1.【點睛】本題考查的知識點是一元一次不等式組的整數(shù)解,解題關鍵是注意解集范圍從而得出整數(shù)解.12、51.【解析】∵一組數(shù)據(jù):3,a,4,6,7,它們的平均數(shù)是5,∴,解得,,∴=1.故答案為5,1.13、2.【解析】
設第n層有an個三角形(n為正整數(shù)),根據(jù)前幾層三角形個數(shù)的變化,即可得出變化規(guī)律“an=2n﹣2”,再代入n=2029即可求出結論.【詳解】設第n層有an個三角形(n為正整數(shù)),∵a2=2,a2=2+2=3,a3=2×2+2=5,a4=2×3+2=7,…,∴an=2(n﹣2)+2=2n﹣2.∴當n=2029時,a2029=2×2029﹣2=2.故答案為2.【點睛】本題考查了規(guī)律型:圖形的變化類,根據(jù)圖形中三角形個數(shù)的變化找出變化規(guī)律“an=2n﹣2”是解題的關鍵.14、50【解析】
根據(jù)題意設鉛直距離為x,則水平距離為,根據(jù)勾股定理求出x的值,即可得到結果.【詳解】解:設鉛直距離為x,則水平距離為,根據(jù)題意得:,解得:(負值舍去),則她實際上升了50米,故答案為:50【點睛】本題考查了解直角三角形的應用,此題關鍵是用同一未知數(shù)表示出下降高度和水平前進距離.15、1.【解析】分析:根據(jù)同一時刻物高與影長成比例,列出比例式再代入數(shù)據(jù)計算即可.詳解:∵==,解得:旗桿的高度=×30=1.故答案為1.點睛:本題考查了相似三角形在測量高度時的應用,解題時關鍵是找出相似的三角形,然后根據(jù)對應邊成比例列出方程,建立數(shù)學模型來解決問題.16、4【解析】
先根據(jù)圓錐的側面展開圖,扇形的弧長等于該圓錐的底面圓的周長,求出OA,最后用勾股定理即可得出結論.【詳解】設圓錐底面圓的半徑為r,∵AC=6,∠ACB=120°,∴=2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根據(jù)勾股定理得,OC==4,故答案為4.【點睛】本題考查了扇形的弧長公式,圓錐的側面展開圖,勾股定理,求出OA的長是解本題的關鍵.三、解答題(共8題,共72分)17、(1)開通隧道前,汽車從A地到B地要走(80+40)千米;(2)汽車從A地到B地比原來少走的路程為[40+40(﹣)]千米.【解析】
(1)過點C作AB的垂線CD,垂足為D,在直角△ACD中,解直角三角形求出CD,進而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,進而求出汽車從A地到B地比原來少走多少路程.【詳解】(1)過點C作AB的垂線CD,垂足為D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC?sin30°=80×=40(千米),AC=(千米),AC+BC=80+(千米),答:開通隧道前,汽車從A地到B地要走(80+)千米;(2)∵cos30°=,BC=80(千米),∴BD=BC?cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+(千米),∴汽車從A地到B地比原來少走多少路程為:AC+BC﹣AB=80+﹣40﹣=40+40(千米).答:汽車從A地到B地比原來少走的路程為[40+40]千米.【點睛】本題考查了勾股定理的運用以及解一般三角形,求三角形的邊或高的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.18、(1)x1=9,x2=﹣2;(2)x1=1,x2=﹣.【解析】
(1)先分解因式,即可得出兩個一元一次方程,求出方程的解即可;(2)移項后分解因式,即可得出兩個一元一次方程,求出方程的解即可.【詳解】解:(1)x2﹣7x﹣18=0,(x﹣9)(x+2)=0,x﹣9=0,x+2=0,x1=9,x2=﹣2;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,x﹣1=0,3x+2=0,x1=1,x2=﹣.【點睛】本題考查了解一元二次方程,熟練掌握因式分解法是解此題的關鍵.19、(8+8)m.【解析】
利用∠ECA的正切值可求得AE;利用∠ECB的正切值可求得BE,由AB=AE+BE可得答案.【詳解】在Rt△EBC中,有BE=EC×tan45°=8m,在Rt△AEC中,有AE=EC×tan30°=8m,∴AB=8+8(m).【點睛】本題考查了解直角三角形的應用-俯角、仰角問題,要求學生能借助其關系構造直角三角形并解直角三角形.20、1【解析】
根據(jù)實數(shù)的混合計算,先把各數(shù)化簡再進行合并.【詳解】原式=1+3-2-3+2=1【點睛】此題主要考查實數(shù)的計算,解題的關鍵是將它們化成最簡形式再進行計算.21、【解析】
作BD平分∠ABC交AC于D,則△ABD、△BCD、△ABC均為等腰三角形,依據(jù)相似三角形的性質即可得出BC的長.【詳解】如圖所示,作BD平分∠ABC交AC于D,則△ABD、△BCD、△ABC均為等腰三角形,∵∠A=∠CBD=36°,∠C=∠C,∴△ABC∽△BDC,∴,設BC=BD=AD=x,則CD=4﹣x,∵BC2=AC×CD,∴x2=4×(4﹣x),解得x1=,x2=(舍去),∴BC的長.【點睛】本題主要考查了復雜作圖以及相似三角形的判定與性質,解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.22、(1)(2)證明見解析(3)F在直徑BC下方的圓弧上,且【解析】
(1)由直線l與以BC為直徑的圓O相切于點C,即可得∠BCE=90°,∠BFC=∠CFE=90°,則可證得△CEF∽△BEC,然后根據(jù)相似三角形的對應邊成比例,即可求得EF的長;(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根據(jù)同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,則可證得△CDF∽△BAF;②由△CDF∽△BAF與△CEF∽△BCF,根據(jù)相似三角形的對應邊成比例,易證得,又由AB=BC,即可證得CD=CE;(3)由CE=CD,可得BC=CD=CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度數(shù),則可得F在⊙O的下半圓上,且.【詳解】(1)解:∵直線l與以BC為直徑的圓O相切于點C.∴∠BCE=90°,又∵BC為直徑,∴∠BFC=∠CFE=90°,∵∠FEC=∠CEB,∴△CEF∽△BEC,∴,∵BE=15,CE=9,即:,解得:EF=;(2)證明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD,同理:∠AFB=∠CFD,∴△CDF∽△BAF;②∵△CDF∽△BAF,∴,又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,∴△CEF∽△BCF,∴,∴,又∵AB=BC,∴CE=CD;(3)解:∵CE=CD,∴BC=CD=CE,在Rt△BCE中,tan∠CBE=,∴∠CBE=30°,故為60°,∴F在直徑BC下方的圓弧上,且.【點睛】考查了相似三角形的判定與性質,圓的切線的性質,圓周角的性質以及三角函數(shù)的性質等知識.此題綜合性很強,解題的關鍵是方程思想與數(shù)形結合思想的應用.23、(1)300米/分;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《基于統(tǒng)計學習方法的電子商務網(wǎng)站評價研究》
- 影視拍攝設備租賃合同模板
- 定制衛(wèi)浴產品購銷合同
- 國有資產醫(yī)療機構租賃合同
- 購房合同的修訂與變更
- 2024年電商行業(yè)運營合作協(xié)議
- 農業(yè)信息化農業(yè)大數(shù)據(jù)應用場景探索計劃
- 保管箱租賃合同保管人
- 汽車行業(yè)智能制造與零部件供應管理方案
- 廢舊物資回收處理合同
- 硫化鈉理化特性表
- 消防主機陸和新LH160調試
- 工商管理本 組織行為學作業(yè)4答案
- QC輸電線路新型防鳥害裝置的研制
- FMEA第五版培訓(完整版)
- 畢業(yè)設計(論文)-履帶式微耕機的結構設計
- 卓越績效評價準則實施指南
- 電廠保潔技術方案
- 【小課題結題報告】《創(chuàng)設“生活化”情境 激發(fā)初中學生學習生物興趣的研究》結題報告
- 風水立向與磁偏角的應用
- (精選)質量合理化建議100條 [水利工程建設質量管理的措施和建議]
評論
0/150
提交評論