版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山東省濟(jì)寧市達(dá)標(biāo)名校2024年高三二診模擬考試數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,則()A. B. C.3 D.42.如圖所示,三國時代數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設(shè)直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機(jī)拋擲500顆米粒(米粒大小忽略不計,?。瑒t落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.134 B.67 C.182 D.1083.已知拋物線的焦點為,對稱軸與準(zhǔn)線的交點為,為上任意一點,若,則()A.30° B.45° C.60° D.75°4.已知函數(shù),若,使得,則實數(shù)的取值范圍是()A. B.C. D.5.已知為坐標(biāo)原點,角的終邊經(jīng)過點且,則()A. B. C. D.6.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件7.已知正三角形的邊長為2,為邊的中點,、分別為邊、上的動點,并滿足,則的取值范圍是()A. B. C. D.8.已知向量,滿足,在上投影為,則的最小值為()A. B. C. D.9.已知橢圓:的左、右焦點分別為,,過的直線與軸交于點,線段與交于點.若,則的方程為()A. B. C. D.10.設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),當(dāng)時,,則使得成立的的取值范圍是()A. B.C. D.11.“且”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既不充分也不必要條件12.函數(shù)的部分圖像大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)如圖是一個算法的流程圖,若輸出的值是,則輸入的值為____________.14.下表是關(guān)于青年觀眾的性別與是否喜歡綜藝“奔跑吧,兄弟”的調(diào)查數(shù)據(jù),人數(shù)如下表所示:不喜歡喜歡男性青年觀眾4010女性青年觀眾3080現(xiàn)要在所有參與調(diào)查的人中用分層抽樣的方法抽取個人做進(jìn)一步的調(diào)研,若在“不喜歡的男性青年觀眾”的人中抽取了8人,則的值為______.15.函數(shù)的值域為_________.16.從4名男生和3名女生中選出4名去參加一項活動,要求男生中的甲和乙不能同時參加,女生中的丙和丁至少有一名參加,則不同的選法種數(shù)為______.(用數(shù)字作答)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若,設(shè),證明:,,使.18.(12分)已知a>0,b>0,a+b=2.(Ⅰ)求的最小值;(Ⅱ)證明:19.(12分)已知函數(shù)(1)若,試討論的單調(diào)性;(2)若,實數(shù)為方程的兩不等實根,求證:.20.(12分)已知函數(shù)(1)若,求證:(2)若,恒有,求實數(shù)的取值范圍.21.(12分)如圖所示,三棱柱中,平面,點,分別在線段,上,且,,是線段的中點.(Ⅰ)求證:平面;(Ⅱ)若,,,求直線與平面所成角的正弦值.22.(10分)的內(nèi)角的對邊分別為,已知.(1)求的大小;(2)若,求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)復(fù)數(shù)相等的特征,求出和,再利用復(fù)數(shù)的模公式,即可得出結(jié)果.【詳解】因為,所以,解得則.故選:A.【點睛】本題考查相等復(fù)數(shù)的特征和復(fù)數(shù)的模,屬于基礎(chǔ)題.2、B【解析】
根據(jù)幾何概型的概率公式求出對應(yīng)面積之比即可得到結(jié)論.【詳解】解:設(shè)大正方形的邊長為1,則小直角三角形的邊長為,
則小正方形的邊長為,小正方形的面積,
則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為,
故選:B.【點睛】本題主要考查幾何概型的概率的應(yīng)用,求出對應(yīng)的面積之比是解決本題的關(guān)鍵.3、C【解析】
如圖所示:作垂直于準(zhǔn)線交準(zhǔn)線于,則,故,得到答案.【詳解】如圖所示:作垂直于準(zhǔn)線交準(zhǔn)線于,則,在中,,故,即.故選:.【點睛】本題考查了拋物線中角度的計算,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.4、C【解析】試題分析:由題意知,當(dāng)時,由,當(dāng)且僅當(dāng)時,即等號是成立,所以函數(shù)的最小值為,當(dāng)時,為單調(diào)遞增函數(shù),所以,又因為,使得,即在的最小值不小于在上的最小值,即,解得,故選C.考點:函數(shù)的綜合問題.【方法點晴】本題主要考查了函數(shù)的綜合問題,其中解答中涉及到基本不等式求最值、函數(shù)的單調(diào)性及其應(yīng)用、全稱命題與存在命題的應(yīng)用等知識點的綜合考查,試題思維量大,屬于中檔試題,著重考查了學(xué)生分析問題和解答問題的能力,以及轉(zhuǎn)化與化歸思想的應(yīng)用,其中解答中轉(zhuǎn)化為在的最小值不小于在上的最小值是解答的關(guān)鍵.5、C【解析】
根據(jù)三角函數(shù)的定義,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出結(jié)果.【詳解】根據(jù)題意,,解得,所以,所以,所以.故選:C.【點睛】本題考查三角函數(shù)定義的應(yīng)用和二倍角的正弦公式,考查計算能力.6、C【解析】
根據(jù)線面平行的性質(zhì)定理和判定定理判斷與的關(guān)系即可得到答案.【詳解】若,根據(jù)線面平行的性質(zhì)定理,可得;若,根據(jù)線面平行的判定定理,可得.故選:C.【點睛】本題主要考查了線面平行的性質(zhì)定理和判定定理,屬于基礎(chǔ)題.7、A【解析】
建立平面直角坐標(biāo)系,求出直線,設(shè)出點,通過,找出與的關(guān)系.通過數(shù)量積的坐標(biāo)表示,將表示成與的關(guān)系式,消元,轉(zhuǎn)化成或的二次函數(shù),利用二次函數(shù)的相關(guān)知識,求出其值域,即為的取值范圍.【詳解】以D為原點,BC所在直線為軸,AD所在直線為軸建系,設(shè),則直線,設(shè)點,所以由得,即,所以,由及,解得,由二次函數(shù)的圖像知,,所以的取值范圍是.故選A.【點睛】本題主要考查解析法在向量中的應(yīng)用,以及轉(zhuǎn)化與化歸思想的運用.8、B【解析】
根據(jù)在上投影為,以及,可得;再對所求模長進(jìn)行平方運算,可將問題轉(zhuǎn)化為模長和夾角運算,代入即可求得.【詳解】在上投影為,即又本題正確選項:【點睛】本題考查向量模長的運算,對于含加減法運算的向量模長的求解,通常先求解模長的平方,再開平方求得結(jié)果;解題關(guān)鍵是需要通過夾角取值范圍的分析,得到的最小值.9、D【解析】
由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點睛】本題主要考查了橢圓的定義,橢圓標(biāo)準(zhǔn)方程的求解.10、D【解析】構(gòu)造函數(shù),令,則,由可得,則是區(qū)間上的單調(diào)遞減函數(shù),且,當(dāng)x∈(0,1)時,g(x)>0,∵lnx<0,f(x)<0,(x2-1)f(x)>0;當(dāng)x∈(1,+∞)時,g(x)<0,∵lnx>0,∴f(x)<0,(x2-1)f(x)<0∵f(x)是奇函數(shù),當(dāng)x∈(-1,0)時,f(x)>0,(x2-1)f(x)<0∴當(dāng)x∈(-∞,-1)時,f(x)>0,(x2-1)f(x)>0.綜上所述,使得(x2-1)f(x)>0成立的x的取值范圍是.本題選擇D選項.點睛:函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)之一,它的應(yīng)用貫穿于整個高中數(shù)學(xué)的教學(xué)之中.某些數(shù)學(xué)問題從表面上看似乎與函數(shù)的單調(diào)性無關(guān),但如果我們能挖掘其內(nèi)在聯(lián)系,抓住其本質(zhì),那么運用函數(shù)的單調(diào)性解題,能起到化難為易、化繁為簡的作用.因此對函數(shù)的單調(diào)性進(jìn)行全面、準(zhǔn)確的認(rèn)識,并掌握好使用的技巧和方法,這是非常必要的.根據(jù)題目的特點,構(gòu)造一個適當(dāng)?shù)暮瘮?shù),利用它的單調(diào)性進(jìn)行解題,是一種常用技巧.許多問題,如果運用這種思想去解決,往往能獲得簡潔明快的思路,有著非凡的功效.11、A【解析】
畫出“,,,所表示的平面區(qū)域,即可進(jìn)行判斷.【詳解】如圖,“且”表示的區(qū)域是如圖所示的正方形,記為集合P,“”表示的區(qū)域是單位圓及其內(nèi)部,記為集合Q,顯然是的真子集,所以答案是充分非必要條件,故選:.【點睛】本題考查了不等式表示的平面區(qū)域問題,考查命題的充分條件和必要條件的判斷,難度較易.12、A【解析】
根據(jù)函數(shù)解析式,可知的定義域為,通過定義法判斷函數(shù)的奇偶性,得出,則為偶函數(shù),可排除選項,觀察選項的圖象,可知代入,解得,排除選項,即可得出答案.【詳解】解:因為,所以的定義域為,則,∴為偶函數(shù),圖象關(guān)于軸對稱,排除選項,且當(dāng)時,,排除選項,所以正確.故選:A.【點睛】本題考查由函數(shù)解析式識別函數(shù)圖象,利用函數(shù)的奇偶性和特殊值法進(jìn)行排除.二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】
依題意,當(dāng)時,由,即,解得;當(dāng)時,由,解得或(舍去).綜上,得或.14、32【解析】
由已知可得抽取的比例,計算出所有被調(diào)查的人數(shù),再乘以抽取的比例即為分層抽樣的樣本容量.【詳解】由題可知,抽取的比例為,被調(diào)查的總?cè)藬?shù)為人,則分層抽樣的樣本容量是人.故答案為:32【點睛】本題考查分層抽樣中求樣本容量,屬于基礎(chǔ)題.15、【解析】
利用換元法,得到,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最值,即可得到函數(shù)的值域,得到答案.【詳解】由題意,可得,令,,即,則,當(dāng)時,,當(dāng)時,,即在為增函數(shù),在為減函數(shù),又,,,故函數(shù)的值域為:.【點睛】本題主要考查了三角函數(shù)的最值,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,其中解答中合理利用換元法得到函數(shù),再利用導(dǎo)數(shù)求解函數(shù)的單調(diào)性與最值是解答的關(guān)鍵,著重考查了推理與預(yù)算能力,屬于基礎(chǔ)題.16、1【解析】
由排列組合及分類討論思想分別討論:①設(shè)甲參加,乙不參加,②設(shè)乙參加,甲不參加,③設(shè)甲,乙都不參加,可得不同的選法種數(shù)為9+9+5=1,得解.【詳解】①設(shè)甲參加,乙不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為9,②設(shè)乙參加,甲不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為9,③設(shè)甲,乙都不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為5,綜合①②③得:不同的選法種數(shù)為9+9+5=1,故答案為:1.【點睛】本題考查了排列組合及分類討論思想,準(zhǔn)確分類及計算是關(guān)鍵,屬中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)證明見解析.【解析】
(1),分,,,四種情況討論即可;(2)問題轉(zhuǎn)化為,利用導(dǎo)數(shù)找到與即可證明.【詳解】(1).①當(dāng)時,恒成立,當(dāng)時,;當(dāng)時,,所以,在上是減函數(shù),在上是增函數(shù).②當(dāng)時,,.當(dāng)時,;當(dāng)時,;當(dāng)時,,所以,在上是減函數(shù),在上是增函數(shù),在上是減函數(shù).③當(dāng)時,,則在上是減函數(shù).④當(dāng)時,,當(dāng)時,;當(dāng)時,;當(dāng)時,,所以,在上是減函數(shù),在上是增函數(shù),在上是減函數(shù).(2)由題意,得.由(1)知,當(dāng),時,,.令,,故在上是減函數(shù),有,所以,從而.,,則,令,顯然在上是增函數(shù),且,,所以存在使,且在上是減函數(shù),在上是增函數(shù),,所以,所以,命題成立.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及證明不等式的問題,考查學(xué)生邏輯推理能力,是一道較難的題.18、(Ⅰ)最小值為;(Ⅱ)見解析【解析】
(1)根據(jù)題意構(gòu)造平均值不等式,結(jié)合均值不等式可得結(jié)果;(2)利用分析法證明,結(jié)合常用不等式和均值不等式即可證明.【詳解】(Ⅰ)則當(dāng)且僅當(dāng),即,時,所以的最小值為.(Ⅱ)要證明:,只需證:,即證明:,由,也即證明:.因為,所以當(dāng)且僅當(dāng)時,有,即,當(dāng)時等號成立.所以【點睛】本題考查均值不等式,分析法證明不等式,審清題意,仔細(xì)計算,屬中檔題.19、(1)答案不唯一,具體見解析(2)證明見解析【解析】
(1)根據(jù)題意得,分與討論即可得到函數(shù)的單調(diào)性;(2)根據(jù)題意構(gòu)造函數(shù),得,參變分離得,分析不等式,即轉(zhuǎn)化為,設(shè),再構(gòu)造函數(shù),利用導(dǎo)數(shù)得單調(diào)性,進(jìn)而得證.【詳解】(1)依題意,當(dāng)時,,①當(dāng)時,恒成立,此時在定義域上單調(diào)遞增;②當(dāng)時,若,;若,;故此時的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2)方法1:由得令,則,依題意有,即,要證,只需證(不妨設(shè)),即證,令,設(shè),則,在單調(diào)遞減,即,從而有.方法2:由得令,則,當(dāng)時,時,故在上單調(diào)遞增,在上單調(diào)遞減,不妨設(shè),則,要證,只需證,易知,故只需證,即證令,(),則==,(也可代入后再求導(dǎo))在上單調(diào)遞減,,故對于時,總有.由此得【點睛】本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,屬于難題.20、(1)見解析;(2)(﹣∞,0]【解析】
(1)利用導(dǎo)數(shù)求x<0時,f(x)的極大值為,即證(2)等價于k≤,x>0,令g(x)=,x>0,再求函數(shù)g(x)的最小值得解.【詳解】(1)∵函數(shù)f(x)=x2e3x,∴f′(x)=2xe3x+3x2e3x=x(3x+2)e3x.由f′(x)>0,得x<﹣或x>0;由f′(x)<0,得,∴f(x)在(﹣∞,﹣)內(nèi)遞增,在(﹣,0)內(nèi)遞減,在(0,+∞)內(nèi)遞增,∴f(x)的極大值為,∴當(dāng)x<0時,f(x)≤(2)∵x2e3x≥(k+3)x+2lnx+1,∴k≤,x>0,令g(x)=,x>0,則g′(x),令h(x)=x2(1+3x)e3x+2lnx﹣1,則h(x)在(0,+∞)上單調(diào)遞增,且x→0+時,h(x)→﹣∞,h(1)=4e3﹣1>0,∴存在x0∈(0,1),使得h(x0)=0,∴當(dāng)x∈(0,x0)時,g′(x)<0,g(x)單調(diào)遞減,當(dāng)x∈(x0,+∞)時,g′(x)>0,g(x)單調(diào)遞增,∴g(x)在(0,+∞)上的最小值是g(x0)=,∵h(yuǎn)(x0)=+2lnx0﹣1=0,所以,令,令所以=1,,∴g(x0)∴實數(shù)k的取值范圍是(﹣∞,0].【點睛】本題主要考查利用證明不等式,考查利用導(dǎo)數(shù)求最值和解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江金屬表面拋光施工方案
- 百色中考一模數(shù)學(xué)試卷
- 游戲開發(fā)客戶反饋處理規(guī)范
- 項目部收尾管理策略
- 農(nóng)業(yè)授權(quán)管理制度辦法
- 公共管理專家管理方案
- 健身房植物擺放租賃合同
- 銀行現(xiàn)金柜臺操作手冊
- 建筑施工合同管理指導(dǎo)
- 臨時用車需求:汽車租賃合同
- 分布式計算安全與隱私保護(hù)
- 客情關(guān)系的有效維護(hù)
- 《班主任工作》教學(xué)大綱
- 新版出口報關(guān)單模板
- 北京市西城區(qū)師范學(xué)校附屬小學(xué)北師大版數(shù)學(xué)六年級上冊期末試題測試題及答案
- 杭州工地數(shù)字化施工方案
- 騰訊云大數(shù)據(jù)云平臺TBDS 產(chǎn)品白皮書
- 網(wǎng)球國家二級裁判培訓(xùn)講座
- 安全防護(hù)、文明施工措施項目支出清單
- 社交媒體在人力資源招聘中的角色與利用研究
- 中南大學(xué)軍事理論學(xué)習(xí)通超星課后章節(jié)答案期末考試題庫2023年
評論
0/150
提交評論