版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
山西農(nóng)業(yè)大學(xué)附屬中學(xué)2025屆數(shù)學(xué)高一下期末監(jiān)測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列結(jié)論正確的是()A.空間中不同三點確定一個平面B.空間中兩兩相交的三條直線確定一個平面C.一條直線和一個點能確定一個平面D.梯形一定是平面圖形2.等差數(shù)列中,則()A.8 B.6 C.4 D.33.在中,,,是邊的中點.為所在平面內(nèi)一點且滿足,則的值為()A. B. C. D.4.已知數(shù)列是各項均為正數(shù)且公比不等于的等比數(shù)列.對于函數(shù),若數(shù)列為等差數(shù)列,則稱函數(shù)為“保比差數(shù)列函數(shù)”.現(xiàn)有定義在上的如下函數(shù):①;②;③;④,則為“保比差數(shù)列函數(shù)”的所有序號為()A.①② B.③④ C.①②④ D.②③④5.設(shè)為直線,是兩個不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則6.直線的傾斜角為()A.30° B.60° C.120° D.150°7.已知數(shù)列滿足若,則數(shù)列的第2018項為()A. B. C. D.8.在前項和為的等差數(shù)列中,若,則=()A. B. C. D.9.已知a,b為非零實數(shù),且,則下列不等式一定成立的是()A. B. C. D.10.如果將直角三角形的三邊都增加1個單位長度,那么新三角形()A.一定是銳角三角形 B.一定是鈍角三角形C.一定是直角三角形 D.形狀無法確定二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)y=sin2x+2sin2x的最小正周期T為_______.12.記,則函數(shù)的最小值為__________.13.已知函數(shù).利用課本中推導(dǎo)等差數(shù)列的前項和的公式的方法,可求得的值為_____.14.在中,內(nèi)角的對邊分別為,若的周長為,面積為,,則__________.15.函數(shù)的最小正周期是________16.走時精確的鐘表,中午時,分針與時針重合于表面上的位置,則當(dāng)下一次分針與時針重合時,時針轉(zhuǎn)過的弧度數(shù)的絕對值等于_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)從某廠生產(chǎn)的一批零件1000個中抽取20個進行研究,應(yīng)采用什么抽樣方法?(2)對(1)中的20個零件的直徑進行測量,得到下列不完整的頻率分布表:(單位:mm)分組頻數(shù)頻率268合計201①完成頻率分布表;②畫出其頻率分布直方圖.18.在三棱柱中,平面ABC,,,D,E分別為AB,中點.(Ⅰ)求證:平面;(Ⅱ)求證:四邊形為平行四邊形;(Ⅲ)求證:平面平面.19.已知等比數(shù)列{an}的前n項和為Sn,S3=,S6=.(1)求數(shù)列{an}的通項公式an;(2)令bn=6n-61+log2an,求數(shù)列{bn}的前n項和Tn.20.已知向量垂直于向量,向量垂直于向量.(1)求向量與的夾角;(2)設(shè),且向量滿足,求的最小值;(3)在(2)的條件下,隨機選取一個向量,求的概率.21.(2012年蘇州17)如圖,在中,已知為線段上的一點,且.(1)若,求的值;(2)若,且,求的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】空間中不共線三點確定一個平面,空間中兩兩相交的三條直線確定一個或三個平面,一條直線和一個直線外一點能確定一個平面,梯形有兩對邊相互平行,所以梯形一定是平面圖形,因此選D.2、D【解析】
設(shè)等差數(shù)列的公差為,根據(jù)題意,求解,進而可求得,即可得到答案.【詳解】由題意,設(shè)等差數(shù)列的公差為,則,即,又由,故選D.【點睛】本題主要考查了等差數(shù)列的通項公式的應(yīng)用,其中解答中設(shè)等差數(shù)列的公差為,利用等差數(shù)列的通項公式化簡求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.3、D【解析】
根據(jù)平面向量基本定理可知,將所求數(shù)量積化為;由模長的等量關(guān)系可知和為等腰三角形,根據(jù)三線合一的特點可將和化為和,代入可求得結(jié)果.【詳解】為中點和為等腰三角形,同理可得:本題正確選項:【點睛】本題考查向量數(shù)量積的求解問題,關(guān)鍵是能夠利用模長的等量關(guān)系得到等腰三角形,從而將含夾角的運算轉(zhuǎn)化為已知模長的向量的運算.4、C【解析】
①,為“保比差數(shù)列函數(shù)”;②,為“保比差數(shù)列函數(shù)”;③不是定值,不是“保比差數(shù)列函數(shù)”;④,是“保比差數(shù)列函數(shù)”,故選C.考點:等差數(shù)列的判定及對數(shù)運算公式點評:數(shù)列,若有是定值常數(shù),則是等差數(shù)列5、B【解析】A中,也可能相交;B中,垂直與同一條直線的兩個平面平行,故正確;C中,也可能相交;D中,也可能在平面內(nèi).【考點定位】點線面的位置關(guān)系6、D【解析】
由直線方程得到直線斜率,進而得到其傾斜角.【詳解】因直線方程為,所以直線的斜率,故其傾斜角為150°.故選D【點睛】本題主要考查求直線的傾斜角,熟記定義即可,屬于基礎(chǔ)題型.7、A【解析】
利用數(shù)列遞推式求出前幾項,可得數(shù)列是以4為周期的周期數(shù)列,即可得出答案.【詳解】,,,數(shù)列是以4為周期的周期數(shù)列,則.故選A.【點睛】本題考查數(shù)列的遞推公式和周期數(shù)列的應(yīng)用,考查學(xué)生分析解決問題的能力,屬于中檔題.8、C【解析】
利用公式的到答案.【詳解】項和為的等差數(shù)列中,故答案選C【點睛】本題考查了等差數(shù)列的前N項和,等差數(shù)列的性質(zhì),利用可以簡化計算.9、C【解析】
,時,、、不成立;利用作差比較,即可求出.【詳解】解:,時,,,故、、不成立;,,.故選:.【點睛】本題考查了不等式的基本性質(zhì),屬于基礎(chǔ)題.10、A【解析】
直角三角形滿足勾股定理,,再比較,,大小關(guān)系即可.【詳解】設(shè)直角三角形滿足,則,又為新三角形最長邊,所以所以最大角為銳角,所以三角形為銳角三角形.故選A【點睛】判斷三角形形狀一般可通過余弦定理判斷,若有一角的余弦值小于零則為鈍角三角形,等于零則為直角三角形,最大角的余弦值大于零則為銳角三角形,屬于較易題目.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】考點:此題主要考查三角函數(shù)的概念、化簡、性質(zhì),考查運算能力.12、4【解析】
利用求解.【詳解】,當(dāng)時,等號成立.故答案為:4【點睛】本題主要考查絕對值不等式求最值,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.13、1.【解析】
由題意可知:可以計算出的值,最后求出的值.【詳解】設(shè),,所以有,因為,因此【點睛】本題考查了數(shù)學(xué)閱讀能力、知識遷移能力,考查了倒序相加法.14、3【解析】
分析:由題可知,中已知,面積公式選用,得,又利用余弦定理,即可求出的值.詳解:,,由余弦定理,得又,,解得.故答案為3.點睛:解三角形問題,多為邊和角的求值問題,這就需要根據(jù)正、余弦定理結(jié)合已知條件靈活轉(zhuǎn)化邊和角之間的關(guān)系,從而達到解決問題的目的.其基本步驟是:第一步:定條件,即確定三角形中的已知和所求,在圖形中標(biāo)出來,然后確定轉(zhuǎn)化的方向;第二步:定工具,即根據(jù)條件和所求合理選擇轉(zhuǎn)化的工具,實施邊角之間的互化;第三步:求結(jié)果.15、【解析】
先利用二倍角余弦公式對函數(shù)解析式進行化簡整理,進而利用三角函數(shù)最小正周期的公式求得函數(shù)的最小正周期.【詳解】解:f(x)=1﹣2sin2x=cos2x∴函數(shù)最小正周期Tπ故答案為π.【點睛】本題主要考查了二倍角的化簡和三角函數(shù)的周期性及其求法.考查了三角函數(shù)的基礎(chǔ)的知識的應(yīng)用.16、.【解析】
設(shè)時針轉(zhuǎn)過的角的弧度數(shù)為,可知分針轉(zhuǎn)過的角為,于此得出,由此可計算出的值,從而可得出時針轉(zhuǎn)過的弧度數(shù)的絕對值的值.【詳解】設(shè)時針轉(zhuǎn)過的角的弧度數(shù)的絕對值為,由分針的角速度是時針角速度的倍,知分針轉(zhuǎn)過的角的弧度數(shù)的絕對值為,由題意可知,,解得,因此,時針轉(zhuǎn)過的弧度數(shù)的絕對值等于,故答案為.【點睛】本題考查弧度制的應(yīng)用,主要是要弄清楚時針與分針旋轉(zhuǎn)的角之間的等量關(guān)系,考查分析問題和計算能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)系統(tǒng)抽樣;(2)①分布表見解析;②直方圖見解析.【解析】
(1)因需要研究的個體很多,且差異不明顯,適宜用系統(tǒng)抽樣.(2)①直接計算頻率即可.②根據(jù)①中計算出的數(shù)據(jù),用每一組的頻率/組距作為縱坐標(biāo),即可做出頻率分布直方圖.【詳解】某廠生產(chǎn)的一批零件1000個,差異不明顯,且因需要研究的個體很多.
所以適宜用系統(tǒng)抽樣.(2)①頻率分布表為分組頻數(shù)頻率20.160.380.440.2合計201②頻率分布直方圖為.分組頻數(shù)頻率頻率/組距20.10.0260.30.0680.40.0840.20.04合計201【點睛】本題考查頻率分布表和根據(jù)頻率分布表繪制頻率分布直方圖,屬于基礎(chǔ)題.18、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析【解析】
(Ⅰ)只需證明,,即可得平面;(Ⅱ)可得四邊形為平行四邊形,,,即可得四邊形為平行四邊形;(Ⅲ)易得平面,即可得平面平面.【詳解】(Ⅰ)∵平面,∴,又,,而,∴平面.(Ⅱ)∵、分別為、的中點,∴,,即四邊形為平行四邊形,∴,,∴四邊形為平行四邊形.(Ⅲ)∵,為中點,∴,又∵,且,∴平面,而平面,∴平面平面.【點睛】本題考查了空間點、線、面位置關(guān)系,屬于基礎(chǔ)題.19、(1)an=a1qn-1=2n-2;(2)Tn=n2-n..【解析】
(1)根據(jù)等比數(shù)列的通項公式和前項求得.(2)將代入中,得是等差數(shù)列,再求和.【詳解】(1)∴,解得∴(2)∴∴數(shù)列是等差數(shù)列.又∴【點睛】本題考查等比數(shù)列和等差數(shù)列的通項和前項和,屬于基礎(chǔ)題.20、(1);(2);(3).【解析】
(1)根據(jù)向量的垂直,轉(zhuǎn)化出方程組,求解方程組即可;(2)將向量賦予坐標(biāo),求得向量對應(yīng)點的軌跡方程,將問題轉(zhuǎn)化為圓外一點,到圓上一點的距離的最值問題,即可求解;(3)根據(jù)余弦定理,解得,以及的臨界狀態(tài)時,對應(yīng)的圓心角的大小,利用幾何概型的概率計算公式,即可求解.【詳解】(1)因為故可得,解得①②由①-②可得,解得,將其代入①可得,即將其代入②可得解得,又向量夾角的范圍為,故向量與的夾角為.(2)不妨設(shè),由可得.不妨設(shè)的起始點為坐標(biāo)原點,終點為C.因此,點C落在以)為圓心,1為半徑的圓上(如圖).因為,即由圓的特點可知的最小值為,即:.(3)當(dāng)時,因為,,滿足勾股定理,故容易得.當(dāng)時,假設(shè)此時點落在如圖所示的F點處.如圖所示.因為,由余弦
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度公積金貸款購房合同標(biāo)準(zhǔn)解讀3篇
- 二零二五版企業(yè)間借款合同范本9篇
- 二零二五年度防盜門安全認(rèn)證及銷售合同2篇
- 二零二五年度車輛保險居間代理合同(含優(yōu)惠方案)3篇
- 二零二五版特色果樹種植基地承包經(jīng)營合同3篇
- 影視作品評價與獎項申報2025年度合同3篇
- 二零二五年綠色節(jié)能LED廣告租賃合同3篇
- 深圳市2025年度人才住房裝修補助購房合同3篇
- 二零二五版汽車抵押貸款車輛殘值評估合同3篇
- 二零二五年度金融產(chǎn)品發(fā)行與銷售合同3篇
- 軟件項目應(yīng)急措施及方案
- 2025河北邯鄲經(jīng)開國控資產(chǎn)運營管理限公司招聘專業(yè)技術(shù)人才5名高頻重點提升(共500題)附帶答案詳解
- 2024年民法典知識競賽考試題庫及答案(共50題)
- 2025老年公寓合同管理制度
- 2024-2025學(xué)年人教版數(shù)學(xué)六年級上冊 期末綜合卷(含答案)
- 鈑金設(shè)備操作培訓(xùn)
- 感染性腹瀉的護理查房
- 中考英語688高頻詞大綱詞頻表
- 九年級初三中考物理綜合復(fù)習(xí)測試卷3套(含答案)
- 管理制度評價表(填寫模板)
- 工地設(shè)計代表服務(wù)記錄
評論
0/150
提交評論