2025屆山東省濱州市惠民縣中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第1頁
2025屆山東省濱州市惠民縣中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第2頁
2025屆山東省濱州市惠民縣中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第3頁
2025屆山東省濱州市惠民縣中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第4頁
2025屆山東省濱州市惠民縣中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆山東省濱州市惠民縣中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)定義域為的奇函數(shù)是增函數(shù),若對恒成立,則實數(shù)的取值范圍是()A. B. C. D.2.已知直線,直線,若,則直線與的距離為()A. B. C. D.3.下列命題正確的是()A.若,則 B.若,則C.若,,則 D.若,,則4.已知、的取值如下表所示:如果與呈線性相關(guān),且線性回歸方程為,則()A. B. C. D.5.一個幾何體的三視圖分別是一個正方形,一個矩形,一個半圓,尺寸大小如圖所示,則該幾何體的體積是()A. B. C. D.6.在直角梯形中,,,,,,則梯形繞著旋轉(zhuǎn)而成的幾何體的體積為()A. B. C. D.7.在中,若,且,則的形狀為()A.直角三角形 B.等腰直角三角形C.正三角形或直角三角形 D.正三角形8.在正方體中,,分別為棱,的中點,則異面直線與所成的角為A. B. C. D.9.正方體中,直線與所成角的余弦值為()A. B. C. D.10.已知函數(shù)在區(qū)間上恒成立,則實數(shù)的最小值是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的值域為_____________.12.在中,內(nèi)角的對邊分別為,若的周長為,面積為,,則__________.13.已知都是銳角,,則=_____14.已知,,與的夾角為鈍角,則的取值范圍是_____;15.已知是邊長為4的等邊三角形,為平面內(nèi)一點,則的最小值為__________.16.在平面直角坐標(biāo)系中,定義兩點之間的直角距離為:現(xiàn)有以下命題:①若是軸上的兩點,則;②已知,則為定值;③原點與直線上任意一點之間的直角距離的最小值為;④若表示兩點間的距離,那么.其中真命題是__________(寫出所有真命題的序號).三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在銳角中,,,分別為內(nèi)角,,所對的邊,且滿足.(1)求角的大?。唬?)若,,求的面積.18.已知平面向量,,.(1)若,求的值;(2)若,與共線,求實數(shù)的值.19.若直線與軸,軸的交點分別為,圓以線段為直徑.(Ⅰ)求圓的標(biāo)準(zhǔn)方程;(Ⅱ)若直線過點,與圓交于點,且,求直線的方程.20.如圖,四面體中,,,為的中點.(1)證明:;(2)已知是邊長為2正三角形.(Ⅰ)若為棱的中點,求的大??;(Ⅱ)若為線段上的點,且,求四面體的體積的最大值.21.已知數(shù)列{bn}的前n項和,n∈N*.(1)求數(shù)列{bn}的通項公式;(2)記,求數(shù)列{cn}的前n項和Sn;(3)在(2)的條件下,記,若對任意正整數(shù)n,不等式恒成立,求整數(shù)m的最大值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

由題意可得,即為,可得恒成立,討論是否為0,結(jié)合換元法和基本不等式,可得所求范圍.【詳解】解:由題意可得,即為,可得恒成立,當(dāng)時,上式顯然成立;當(dāng)時,可得,設(shè),,可得,由,可得,可得,即,故選:A.【點睛】本題主要考查函數(shù)的奇偶性和單調(diào)性的運用,考查不等式恒成立問題解法,注意運用參數(shù)分離和換元法,考查化簡運算能力,屬于中檔題.2、A【解析】

利用直線平行的性質(zhì)解得,再由兩平行線間的距離求解即可【詳解】∵直線l1:ax+2y﹣1=0,直線l2:8x+ay+2﹣a=0,l1∥l2,∴,且解得a=﹣1.所以直線l1:1x-2y+1=0,直線l2:1x-2y+3=0,故與的距離為故選A.【點睛】本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意直線平行的性質(zhì)的靈活運用.3、C【解析】

對每一個選項進行判斷,選出正確的答案.【詳解】A.若,則,取不成立B.若,則,取不成立C.若,,則,正確D.若,,則,取不成立故答案選C【點睛】本題考查了不等式的性質(zhì),找出反例是解題的關(guān)鍵.4、A【解析】

計算出、,再將點的坐標(biāo)代入回歸直線方程,可求出的值.【詳解】由表格中的數(shù)據(jù)可得,,由于回歸直線過樣本的中心點,則有,解得,故選:A.【點睛】本題考查回歸直線方程中參數(shù)的計算,解題時要充分利用回歸直線過樣本的中心點這一結(jié)論,考查計算能力,屬于基礎(chǔ)題.5、C【解析】

由給定的幾何體的三視圖得到該幾何體表示一個底面半徑為1,母線長為2的半圓柱,結(jié)合圓柱的體積公式,即可求解.【詳解】由題意,根據(jù)給定的幾何體的三視圖可得:該幾何體表示一個底面半徑為1,母線長為2的半圓柱,所以該半圓柱的體積為.故選:C.【點睛】本題考查了幾何體的三視圖及體積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線,求解以三視圖為載體的空間幾何體的表面積與體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)公式求解.6、A【解析】

易得梯形繞著旋轉(zhuǎn)而成的幾何體為圓臺,再根據(jù)圓臺的體積公式求解即可.【詳解】易得梯形繞著旋轉(zhuǎn)而成的幾何體為圓臺,圓臺的高,上底面圓半徑,下底面圓半徑.故該圓臺的體積故選:A【點睛】本題主要考查了旋轉(zhuǎn)體中圓臺的體積公式,屬于基礎(chǔ)題.7、D【解析】

由兩角和的正切公式求得,從而得,由二倍角公式求得,再求得,注意檢驗符合題意,可判斷三角形形狀.【詳解】,∴,∴,由,即.∴或.當(dāng)時,,無意義.當(dāng)時,,此時為正三角形.故選:D.【點睛】本題考查三角形形狀的判斷,考查兩角和的正切公式和二倍角公式,根據(jù)三角公式求出角是解題的基本方法.8、A【解析】

如圖做輔助線,正方體中,且,P,M為和中點,,則即為所求角,設(shè)邊長即可求得.【詳解】如圖,取的中點,連接,,.因為為棱的中點,為的中點,所以,所以,則是異面直線與所成角的平面角.設(shè),在中,,,則,即.【點睛】本題考查異面直線所成的角,解題關(guān)鍵在于構(gòu)造包含異面直線所成角的三角形.9、C【解析】

作出相關(guān)圖形,通過平行將異面直線所成角轉(zhuǎn)化為共面直線所成角.【詳解】作出相關(guān)圖形,由于,所以直線與所成角即為直線與所成角,由于為等邊三角形,于是所成角余弦值為,故答案選C.【點睛】本題主要考查異面直線所成角的余弦值,難度不大.10、D【解析】

直接利用三角函數(shù)關(guān)系式的恒等變換,把函數(shù)的關(guān)系式變形為正弦型函數(shù),進一步利用恒成立問題的應(yīng)用求出結(jié)果.【詳解】函數(shù),由因為,所以,即,當(dāng)時,函數(shù)的最大值為,由于在區(qū)間上恒成立,故,實數(shù)的最小值是.故選:D【點睛】本題考查了兩角和的余弦公式、輔助角公式以及三角函數(shù)的最值,需熟記公式與三角函數(shù)的性質(zhì),同時考查了不等式恒成立問題,屬于基出題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

分析函數(shù)在區(qū)間上的單調(diào)性,由此可求出該函數(shù)在區(qū)間上的值域.【詳解】由于函數(shù)和函數(shù)在區(qū)間上均為增函數(shù),所以,函數(shù)在區(qū)間上也為增函數(shù),且,,當(dāng)時,,因此,函數(shù)的值域為.故答案為:.【點睛】本題考查函數(shù)值域的求解,解題的關(guān)鍵就是判斷出函數(shù)的單調(diào)性,考查分析問題和解決問題的能力,屬于中等題.12、3【解析】

分析:由題可知,中已知,面積公式選用,得,又利用余弦定理,即可求出的值.詳解:,,由余弦定理,得又,,解得.故答案為3.點睛:解三角形問題,多為邊和角的求值問題,這就需要根據(jù)正、余弦定理結(jié)合已知條件靈活轉(zhuǎn)化邊和角之間的關(guān)系,從而達到解決問題的目的.其基本步驟是:第一步:定條件,即確定三角形中的已知和所求,在圖形中標(biāo)出來,然后確定轉(zhuǎn)化的方向;第二步:定工具,即根據(jù)條件和所求合理選擇轉(zhuǎn)化的工具,實施邊角之間的互化;第三步:求結(jié)果.13、【解析】

由已知求出,再由兩角差的正弦公式計算.【詳解】∵都是銳角,∴,又,∴,,∴.故答案為.【點睛】本題考查兩角和與差的正弦公式.考查同角間的三角函數(shù)關(guān)系.解題關(guān)鍵是角的變換,即.這在三角函數(shù)恒等變換中很重要,即解題時要觀察“已知角”和“未知角”的關(guān)系,根據(jù)這個關(guān)系選用相應(yīng)的公式計算.14、【解析】

與的夾角為鈍角,即數(shù)量積小于0.【詳解】因為與的夾角為鈍角,所以與的數(shù)量積小于0且不平行.且所以【點睛】本題考查兩向量的夾角為鈍角的坐標(biāo)表示,一定注意數(shù)量積小于0包括平角.15、-1.【解析】分析:可建立坐標(biāo)系,用平面向量的坐標(biāo)運算解題.詳解:建立如圖所示的平面直角坐標(biāo)系,則,設(shè),∴,易知當(dāng)時,取得最小值.故答案為-1.點睛:求最值問題,一般要建立一個函數(shù)關(guān)系式,化幾何最值問題為函數(shù)的最值,本題通過建立平面直角坐標(biāo)系,把向量的數(shù)量積用點的坐標(biāo)表示出來后,再用配方法得出最小值,根據(jù)表達式的幾何意義也能求得最大值.16、①②④【解析】

根據(jù)新定義的直角距離,結(jié)合具體選項,進行逐一分析即可.【詳解】對①:因為是軸上的兩點,故,則,①正確;對②:根據(jù)定義因為,故,②正確;對③:根據(jù)定義,當(dāng)且僅當(dāng)時,取得最小值,故③錯誤;對④:因為,由不等式,即可得,故④正確.綜上正確的有①②④故答案為:①②④.【點睛】本題考查新定義問題,涉及同角三角函數(shù)關(guān)系,絕對值三角不等式,屬綜合題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)利用正弦定理化簡已知的等式,根據(jù)sinA不為0,可得出sinB的值,由B為銳角,利用特殊角的三角函數(shù)值,即可求出B的度數(shù);(2)由b及cosB的值,利用余弦定理列出關(guān)于a與c的關(guān)系式,利用完全平方公式變形后,將a+c的值代入,求出ac的值,將a+c=5與ac=6聯(lián)立,并根據(jù)a大于c,求出a與c的值,再由a,b及c的值,利用余弦定理求出cosA的值,將b,c及cosA的值代入即可求出值.【詳解】(1),由正弦定理得,所以,因為三角形ABC為銳角三角形,所以.(2)由余弦定理得,,所以所以.18、(1);(2)4.【解析】

(1)結(jié)合已知求得:,利用平面向量的模的坐標(biāo)表示公式計算得解.(2)求得:,利用與共線可列方程,解方程即可.【詳解】解:(1),所以.(2),因為與共線,所以,解得.【點睛】本題主要考查了平面向量的模的坐標(biāo)公式及平面向量平行的坐標(biāo)關(guān)系,考查方程思想及計算能力,屬于基礎(chǔ)題.19、(Ⅰ);(Ⅱ)或.【解析】

(1)本題首先根據(jù)直線方程確定、兩點坐標(biāo),然后根據(jù)線段為直徑確定圓心與半徑,即可得出圓的標(biāo)準(zhǔn)方程;(2)首先可根據(jù)題意得出圓心到直線的距離為,然后根據(jù)直線的斜率是否存在分別設(shè)出直線方程,最后根據(jù)圓心到直線距離公式即可得出結(jié)果。【詳解】(1)令方程中的,得,令,得.所以點的坐標(biāo)分別為.所以圓的圓心是,半徑是,所以圓的標(biāo)準(zhǔn)方程為.(2)因為,圓的半徑為,所以圓心到直線的距離為.若直線的斜率不存在,直線的方程為,符合題意.若直線的斜率存在,設(shè)其直線方程為,即.圓的圓心到直線的距離,解得.則直線的方程為,即.綜上,直線的方程為或.【點睛】本題考查圓的標(biāo)準(zhǔn)方程與幾何性質(zhì),考查直線和圓的位置關(guān)系,當(dāng)直線與圓相交時,半徑、弦長的一半以及圓心到直線距離可構(gòu)成直角三角形,考查計算能力,在計算過程中要注意討論直線的斜率是否存在,是中檔題。20、(1)證明見解析;(2)(Ⅰ);(Ⅱ)【解析】

(1)取中點,連接,通過證明,證得平面,由此證得.(2)(I)通過證明,證得平面,由此證得,利用“直斜邊的中線等于斜邊的一半”這個定理及其逆定理,證得.(II)利用求得四面體的體積的表達式,結(jié)合基本不等式求得四面體的體積的最大值.【詳解】(1)取的中點,所以,所以.又因為,所以,又,所以面,所以.(2)(Ⅰ)由題意得,在正三角形中,,又因為,且,所以面,所以.∵為棱的中點,∴,在中,為的中點,.∴(Ⅱ),四面體的體積,又因為,即,所以等號當(dāng)且僅當(dāng)時成立,此時.故所求的四面體的體積的最大值為.【點睛】本小題主要考查線線垂直的證明,考查線面垂直的證明,考查直角三角形的判定,考查三棱錐體積的最大值的求法,考查基本不等式的運用,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1)bn=3n﹣2,n∈N*.(2);(3)最大值為1.【解析】

(1)利用,求得數(shù)列的通項公式.(2)利用裂項求和法求得數(shù)列的前項和.(3)由(2)求得的表達式,記不等式左邊為,利用差比較法判斷出的單調(diào)性,進而求得的最小值,由此列不等式求得的取值范圍,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論