蘇州工業(yè)園區(qū)2025屆九上數(shù)學期末統(tǒng)考模擬試題含解析_第1頁
蘇州工業(yè)園區(qū)2025屆九上數(shù)學期末統(tǒng)考模擬試題含解析_第2頁
蘇州工業(yè)園區(qū)2025屆九上數(shù)學期末統(tǒng)考模擬試題含解析_第3頁
蘇州工業(yè)園區(qū)2025屆九上數(shù)學期末統(tǒng)考模擬試題含解析_第4頁
蘇州工業(yè)園區(qū)2025屆九上數(shù)學期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

蘇州工業(yè)園區(qū)2025屆九上數(shù)學期末統(tǒng)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,D是等邊△ABC邊AD上的一點,且AD:DB=1:2,現(xiàn)將△ABC折疊,使點C與D重合,折痕為EF,點E、F分別在AC、BC上,則CE:CF=()A. B. C. D.2.如圖,這是二次函數(shù)的圖象,則的值等于()A. B. C. D.3.擲一枚質(zhì)地均勻硬幣,前3次都是正面朝上,擲第4次時正面朝上的概率是()A.0 B. C. D.14.下圖中,最能清楚地顯示每組數(shù)據(jù)在總數(shù)中所占百分比的統(tǒng)計圖是()A. B.C. D.5.如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點E,交CB于點F,若AC=3,AB=5,則CE的長為()A. B. C. D.6.如圖,已知則添加下列一個條件后,仍無法判定的是()A. B. C. D.7.二次函數(shù)(,,為常數(shù),且)中的與的部分對應值如下表:以下結(jié)論:①二次函數(shù)有最小值為;②當時,隨的增大而增大;③二次函數(shù)的圖象與軸只有一個交點;④當時,.其中正確的結(jié)論有()個A. B. C. D.8.下列方程中,是關(guān)于x的一元二次方程的為()A. B. C. D.9.一元二次方程配方后可化為()A. B. C. D.10.如圖,點A,B,C都在⊙O上,∠ABC=70°,則∠AOC的度數(shù)是()A.35° B.70° C.110° D.140°11.若點(﹣2,y1),(﹣1,y2),(3,y3)在雙曲線y=(k<0)上,則y1,y2,y3的大小關(guān)系是()A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y212.如圖,在等腰Rt△ABC中,∠BAC=90°,BC=2,點P是△ABC內(nèi)部的一個動點,且滿足∠PBC=∠PCA,則線段AP長的最小值為()A.0.5 B.﹣1 C.2﹣ D.二、填空題(每題4分,共24分)13.如下圖,圓柱形排水管水平放置,已知截面中有水部分最深為,排水管的截面半徑為,則水面寬是__________.

14.如圖,線段AB=2,分別以A、B為圓心,以AB的長為半徑作弧,兩弧交于C、D兩點,則陰影部分的面積為.15.方程的解是__________.16.關(guān)于的一元二次方程有實數(shù)根,則實數(shù)的取值范圍是________.17.一元二次方程x2﹣3x+2=0的兩根為x1,x2,則x1+x2﹣x1x2=______.18.如圖,在△ABC中,AC=4,將△ABC繞點C按逆時針旋轉(zhuǎn)30°得到△FGC,則圖中陰影部分的面積為_____.三、解答題(共78分)19.(8分)解方程:x2-7x-18=0.20.(8分)學校為獎勵“漢字聽寫大賽”的優(yōu)秀學生,派王老師到商店購買某種獎品,他看到如表所示的關(guān)于該獎品的銷售信息,便用1400元買回了獎品,求王老師購買該獎品的件數(shù).購買件數(shù)銷售價格不超過30件單價40元超過30件每多買1件,購買的所有物品單價將降低0.5元,但單價不得低于30元21.(8分)定義:我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.理解:(1)如圖1,已知Rt△ABC在正方形網(wǎng)格中,請你只用無刻度的直尺在網(wǎng)格中找到一點D,使四邊形ABCD是以AC為“相似對角線”的四邊形(保留畫圖痕跡,找出3個即可);(2)如圖2,在四邊形ABCD中,∠ABC=80°,∠ADC=140°,對角線BD平分∠ABC.求證:BD是四邊形ABCD的“相似對角線”;(3)如圖3,已知FH是四邊形EFCH的“相似對角線”,∠EFH=∠HFG=30°,連接EG,若△EFG的面積為2,求FH的長.22.(10分)雜技團進行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體看成一點的路線是拋物線的一部分,如圖所示.求演員彈跳離地面的最大高度;已知人梯高米,在一次表演中,人梯到起跳點A的水平距離是4米,問這次表演是否成功?請說明理由.23.(10分)如圖,為了測量一棟樓的高度,小明同學先在操場上處放一面鏡子,向后退到處,恰好在鏡子中看到樓的頂部;再將鏡子放到處,然后后退到處,恰好再次在鏡子中看到樓的頂部(在同一條直線上),測得,如果小明眼睛距地面高度,為,試確定樓的高度.24.(10分)甲、乙兩所醫(yī)院分別有一男一女共4名醫(yī)護人員支援湖北武漢抗擊疫情.(1)若從甲、乙兩醫(yī)院支援的醫(yī)護人員中分別隨機選1名,則所選的2名醫(yī)護人員性別相同的概率是;(2)若從支援的4名醫(yī)護人員中隨機選2名,用列表或畫樹狀圖的方法求出這2名醫(yī)護人員來自同一所醫(yī)院的概率.25.(12分)如圖,四邊形ABCD中,AB∥CD,CD≠AB,點F在BC上,連DF與AB的延長線交于點G.(1)求證:CF?FG=DF?BF;(2)當點F是BC的中點時,過F作EF∥CD交AD于點E,若AB=12,EF=8,求CD的長.26.如圖,已知拋物線y=ax2+bx+c過點A(﹣3,0),B(﹣2,3),C(0,3),頂點為D.(1)求拋物線的解析式;(2)設點M(1,m),當MB+MD的值最小時,求m的值;(3)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值.

參考答案一、選擇題(每題4分,共48分)1、B【詳解】解:由折疊的性質(zhì)可得,∠EDF=∠C=60o,CE=DE,CF=DF再由∠BDF+∠ADE=∠BDF+∠BFD=120o可得∠ADE=∠BFD,又因∠A=∠B=60o,根據(jù)兩角對應相等的兩三角形相似可得△AED∽△BDF所以,設AD=a,BD=2a,AB=BC=CA=3a,再設CE==DE=x,CF==DF=y,則AE=3a-x,BF=3a-y,所以整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,即故選B.【點睛】本題考查相似三角形的判定及性質(zhì).2、D【分析】由題意根據(jù)二次函數(shù)圖象上點的坐標特征,把原點坐標代入解析式得到=0,然后解關(guān)于a的方程即可.【詳解】解:因為二次函數(shù)圖象過原點,所以把(0,0)代入二次函數(shù)得出=0,解得或,又因為二次函數(shù)圖象開口向下,所以.故選:D.【點睛】本題考查二次函數(shù)圖象上點的坐標特征,根據(jù)二次函數(shù)圖象上點的坐標滿足其解析式進行分析作答即可.3、B【分析】利用概率的意義直接得出答案.【詳解】連續(xù)拋擲一枚質(zhì)地均勻的硬幣4次,前3次的結(jié)果都是正面朝上,

他第4次拋擲這枚硬幣,正面朝上的概率為:.故選:B.【點睛】本題主要考查了概率的意義,正確把握概率的定義是解題關(guān)鍵.4、A【分析】根據(jù)統(tǒng)計圖的特點進行分析可得:扇形統(tǒng)計圖表示的是部分在總體中所占的百分比,但一般不能直接從圖中得到具體的數(shù)據(jù);折線統(tǒng)計圖表示的是事物的變化情況;條形統(tǒng)計圖能清楚地表示出每個項目的具體數(shù)目.【詳解】解:在進行數(shù)據(jù)描述時,要顯示部分在總體中所占的百分比,應采用扇形統(tǒng)計圖.

故選:A.【點睛】本題考查統(tǒng)計圖的選擇,解決本題的關(guān)鍵是明確:扇形統(tǒng)計圖表示的是部分在總體中所占的百分比,但一般不能直接從圖中得到具體的數(shù)據(jù);折線統(tǒng)計圖表示的是事物的變化情況;條形統(tǒng)計圖能清楚地表示出每個項目的具體數(shù)目;頻率分布直方圖,清楚顯示在各個不同區(qū)間內(nèi)取值,各組頻率分布情況,易于顯示各組之間頻率的差別.5、A【分析】根據(jù)三角形的內(nèi)角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根據(jù)角平分線和對頂角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定與性質(zhì)得出答案.【詳解】過點F作FG⊥AB于點G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的長為.故選A.【點睛】本題考查了直角三角形性質(zhì)、等腰三角形的性質(zhì)和判定,三角形的內(nèi)角和定理以及相似三角形的判定與性質(zhì)等知識,關(guān)鍵是推出∠CEF=∠CFE.6、A【分析】先根據(jù)∠1=∠2得出∠BAC=∠DAE,再由相似三角形的判定定理對各選項進行逐一判定即可.【詳解】解:∵∠1=∠2,

∴∠BAC=∠DAE.A.,∠B與∠D的大小無法判定,∴無法判定△ABC∽△ADE,故本選項符合題意;B.,∴△ABC∽△ADE,故本選項不符合題意;C.∴△ABC∽△ADE,故本選項不符合題意;D.∴△ABC∽△ADE,故本選項不符合題意;故選:A【點睛】本題考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此題的關(guān)鍵.7、B【分析】根據(jù)表中數(shù)據(jù),可獲取相關(guān)信息:拋物線的頂點坐標為(1,-4),開口向上,與x軸的兩個交點坐標是(-1,0)和(3,0),據(jù)此即可得到答案.【詳解】①由表格給出的數(shù)據(jù)可知(0,-3)和(2,-3)是一對對稱點,所以拋物線的對稱軸為=1,即頂點的橫坐標為x=1,所以當x=1時,函數(shù)取得最小值-4,故此選項正確;②由表格和①可知當x<1時,函數(shù)y隨x的增大而減少;故此選項錯誤;③由表格和①可知頂點坐標為(1,-4),開口向上,∴二次函數(shù)的圖象與x軸有兩個交點,一個是(-1,0),另一個是(3,0);故此選項錯誤;④函數(shù)圖象在x軸下方y(tǒng)<0,由表格和③可知,二次函數(shù)的圖象與x軸的兩個交點坐標是(-1,0)和(3,0),∴當時,y<0;故此選項正確;綜上:①④兩項正確,故選:B.【點睛】本題綜合性的考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是能根據(jù)二次函數(shù)的對稱性判斷:縱坐標相同兩個點的是一對對稱點.8、B【解析】根據(jù)一元二次方程的定義,一元二次方程有三個特點:(1)只含有一個未知數(shù);(1)未知數(shù)的最高次數(shù)是1;(3)是整式方程.要判斷一個方程是否為一元二次方程,先看它是否為整式方程,若是,再對它進行整理.如果能整理為ax1+bx+c=0(a≠0)的形式,則這個方程就為一元二次方程.【詳解】解:A.,是分式方程,B.,正確,C.,是二元二次方程,D.,是關(guān)于y的一元二次方程,故選B【點睛】此題主要考查了一元二次方程的定義,關(guān)鍵是掌握一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數(shù);②只含有一個未知數(shù);③未知數(shù)的最高次數(shù)是1.9、B【分析】根據(jù)一元二次方程配方法即可得到答案.【詳解】解:∵x2+4x=3∴x2+4x+4=3+4∴(x+2)2=7故選B【點睛】此題主要考查了解一元二次方程的配方法,熟練掌握一元二次方程各種解法是解題的關(guān)鍵.10、D【分析】根據(jù)圓周角定理問題可解.【詳解】解:∵∠ABC所對的弧是,

∠AOC所對的弧是,

∴∠AOC=2∠ABC=2×70°=140°.

故選D.【點睛】本題考查圓周角定理,解答關(guān)鍵是掌握圓周角和同弧所對的圓心角的數(shù)量關(guān)系.11、D【解析】分析:直接利用反比例函數(shù)的性質(zhì)分析得出答案.詳解:∵點(﹣1,y1),(﹣1,y1),(3,y3)在雙曲線y=(k<0)上,∴(﹣1,y1),(﹣1,y1)分布在第二象限,(3,y3)在第四象限,每個象限內(nèi),y隨x的增大而增大,∴y3<y1<y1.故選:D.點睛:此題主要考查了反比例函數(shù)的性質(zhì),正確掌握反比例函數(shù)增減性是解題關(guān)鍵.12、C【分析】先計算出∠PBC+∠PCB=45°,則∠BPC=135°,利用圓周角定理可判斷點P在以BC為弦的⊙O上,如圖,連接OA交于P′,作所對的圓周角∠BQC,利用圓周角定理計算出∠BOC=90°,從而得到△OBC為等腰直角三角形,四邊形ABOC為正方形,所以OA=BC=2,OB=,根據(jù)三角形三邊關(guān)系得到AP≥OA﹣OP(當且僅當A、P、O共線時取等號,即P點在P′位置),于是得到AP的最小值.【詳解】解:∵△ABC為等腰直角三角形,∴∠ACB=45°,即∠PCB+∠PCA=45°,∵∠PBC=∠PCA,∴∠PBC+∠PCB=45°,∴∠BPC=135°,∴點P在以BC為弦的⊙O上,如圖,連接OA交于P′,作所對的圓周角∠BQC,則∠BCQ=180°﹣∠BPC=45°,∴∠BOC=2∠BQC=90°,∴△OBC為等腰直角三角形,∴四邊形ABOC為正方形,∴OA=BC=2,∴OB=BC=,∵AP≥OA﹣OP(當且僅當A、P、O共線時取等號,即P點在P′位置),∴AP的最小值為2﹣.故選:C.【點睛】本題考查了圓周角定理及等腰直角三角形的性質(zhì).圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.二、填空題(每題4分,共24分)13、【分析】利用垂徑定理構(gòu)建直角三角形,然后利用勾股定理即可得解.【詳解】設排水管最低點為C,連接OC交AB于D,連接OB,如圖所示:

∵OC=OB=10,CD=5∴OD=5∵OC⊥AB∴∴故答案為:.【點睛】此題主要考查垂徑定理的實際應用,熟練掌握,即可解題.14、【分析】利用扇形的面積公式等邊三角形的性質(zhì)解決問題即可.【詳解】解:由題意可得,AD=BD=AB=AC=BC,∴△ABD和△ABC時等邊三角形,∴陰影部分的面積為:故答案為﹣4.【點睛】考核知識點:扇形面積.熟記扇形面積是關(guān)鍵.15、【分析】先通過移項將等號右邊多項式移到左邊,再利用提公因式法因式分解,即可得出方程的根.【詳解】解:移項得:提公因式得:解得:;故答案為:.【點睛】本題考查一元二次方程因式分解的解法.在解一元二次方程的時候,一定要先觀察方程的形式,如果遇到了相同的因式,先將他們移到方程等號的一側(cè),看能否利用提公因式解方程,觀察以及積累是快速解題的關(guān)鍵.16、且【解析】根據(jù)根的判別式△≥0且二次項系數(shù)求解即可.【詳解】由題意得,16-4≥0,且,解之得且.故答案為:且.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關(guān)系,熟練掌握根的判別式與根的關(guān)系式解答本題的關(guān)鍵.當?>0時,一元二次方程有兩個不相等的實數(shù)根;當?=0時,一元二次方程有兩個相等的實數(shù)根;當?<0時,一元二次方程沒有實數(shù)根.17、1【分析】利用根與系數(shù)的關(guān)系得到x1+x2=3,x1x2=2,然后利用整體代入的方法計算.【詳解】解:根據(jù)題意得:x1+x2=3,x1x2=2,

所以x1+x2-x1x2=3-2=1.

故答案為:1.【點睛】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=-,x1x2=.18、【解析】根據(jù)旋轉(zhuǎn)的性質(zhì)可知△FGC的面積=△ABC的面積,觀察圖形可知陰影部分的面積就是扇形CAF的面積.【詳解】解:由題意得,△FGC的面積=△ABC的面積,∠ACF=30o,AC=4,由圖形可知,陰影部分的面積=△FGC的面積+扇形CAF的面積﹣△ABC的面積,∴陰影部分的面積=扇形CAF的面積=.故答案為:.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),不規(guī)則圖形及扇形的面積計算.三、解答題(共78分)19、【分析】利用因式分解法求解即可.【詳解】因式分解,得于是得或故原方程的解為:.【點睛】本題考查了一元二次方程的解法,其主要解法包括:直接開方法、配方法、公式法、因式分解法(十字相乘法)等,熟記各解法是解題關(guān)鍵.20、王老師購買該獎品的件數(shù)為40件.【解析】試題分析:根據(jù)題意首先表示出每件商品的價格,進而得出購買商品的總錢數(shù),進而得出等式求出答案.試題解析:∵30×40=1200<1400,∴獎品數(shù)超過了30件,設總數(shù)為x件,則每件商品的價格為:[40﹣(x﹣30)×0.5]元,根據(jù)題意可得:x[40﹣(x﹣30)×0.5]=1400,解得:x1=40,x2=70,∵x=70時,40﹣(70﹣30)×0.5=20<30,∴x=70不合題意舍去,答:王老師購買該獎品的件數(shù)為40件.考點:一元二次方程的應用.21、(1)見解析;(2)證明見解析;(3)FH=2.【解析】(1)先求出AB,BC,AC,再分情況求出CD或AD,即可畫出圖形;(2)先判斷出∠A+∠ADB=140°=∠ADC,即可得出結(jié)論;(3)先判斷出△FEH∽△FHG,得出FH2=FE?FG,再判斷出EQ=FE,繼而求出FG?FE=8,即可得出結(jié)論.【詳解】(1)由圖1知,AB=,BC=2,∠ABC=90°,AC=5,∵四邊形ABCD是以AC為“相似對角線”的四邊形,當∠ACD=90°時,△ACD∽△ABC或△ACD∽△CBA,∴或,∴CD=10或CD=2.5同理:當∠CAD=90°時,AD=2.5或AD=10,(2)∵∠ABC=80°,BD平分∠ABC,∴∠ABD=∠DBC=40°,∴∠A+∠ADB=140°∵∠ADC=140°,∴∠BDC+∠ADB=140°,∴∠A=∠BDC,∴△ABD∽△BDC,∴BD是四邊形ABCD的“相似對角線”;(3)如圖3,∵FH是四邊形EFGH的“相似對角線”,∴△EFH與△HFG相似,∵∠EFH=∠HFG,∴△FEH∽△FHG,∴,∴FH2=FE?FG,過點E作EQ⊥FG于Q,∴EQ=FE?sin60°=FE,∵FG×EQ=2,∴FG×FE=2,∴FG?FE=8,∴FH2=FE?FG=8,∴FH=2.【點睛】本題考查了相似三角形的綜合題,涉及到新概念、相似三角形的判定與性質(zhì)等,正確理解新概念,熟練應用相似三角形的相關(guān)知識是解題的關(guān)鍵.22、(1);(2)能成功;理由見解析.【分析】(1)將拋物線解析式整理成頂點式,可得最大值,即為最大高度;(2)將x=4代入拋物線解析式,計算函數(shù)值是否等于3.4進行判斷.【詳解】(1)y=-x2+3x+1=-+∵-<0,∴函數(shù)的最大值是.答:演員彈跳的最大高度是米.(2)當x=4時,y=-×42+3×4+1=3.4=BC,所以這次表演成功.【點睛】此題將用待定系數(shù)法求二次函數(shù)解析式、動點問題和最小值問題相結(jié)合,有較大的維跳躍,考查了同學們的應變能力和綜合思維能力,是一道好題.23、32米【分析】設關(guān)于的對稱點為,根據(jù)光線的反射可知,延長、相交于點,連接并延長交于點,先根據(jù)鏡面反射的基本性質(zhì),得出,再運用相似三角形對應邊成比例即可解答.【詳解】設關(guān)于的對稱點為,根據(jù)光線的反射可知,延長、相交于點,連接并延長交于點,由題意可知且、∴∴∴即:∴∴答:樓的高度為米.【點睛】本題考查了相似三角形的應用、鏡面反射的基本性質(zhì),準確作出輔助線是關(guān)鍵.24、(1);(2)【分析】(1)根據(jù)甲、乙兩所醫(yī)院分別有一男一女,列出樹狀圖,得出所有情況,再根據(jù)概率公式即可得出答案;(2)根據(jù)題意先畫出樹狀圖,得出所有情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】解:(1)根據(jù)題意畫圖如下:共有4種情況,其中所選的2名教師性別相同的有2種,則所選的2名

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論