2025屆甘肅省蘭州市城關(guān)區(qū)外國語學(xué)校九上數(shù)學(xué)期末預(yù)測試題含解析_第1頁
2025屆甘肅省蘭州市城關(guān)區(qū)外國語學(xué)校九上數(shù)學(xué)期末預(yù)測試題含解析_第2頁
2025屆甘肅省蘭州市城關(guān)區(qū)外國語學(xué)校九上數(shù)學(xué)期末預(yù)測試題含解析_第3頁
2025屆甘肅省蘭州市城關(guān)區(qū)外國語學(xué)校九上數(shù)學(xué)期末預(yù)測試題含解析_第4頁
2025屆甘肅省蘭州市城關(guān)區(qū)外國語學(xué)校九上數(shù)學(xué)期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆甘肅省蘭州市城關(guān)區(qū)外國語學(xué)校九上數(shù)學(xué)期末預(yù)測試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.中國在夏代就出現(xiàn)了相當(dāng)于砝碼的“權(quán)”,此后的多年間,不同朝代有不同形狀和材質(zhì)的“權(quán)”作為衡量的量具.下面是一個“”形增砣砝碼,其俯視圖如下圖所示,則其主視圖為()A. B. C. D.2.方程x2﹣6x+5=0的兩個根之和為()A.﹣6 B.6 C.﹣5 D.53.解方程2(5x-1)2=3(5x-1)的最適當(dāng)?shù)姆椒ㄊ牵ǎ〢.直接開平方法. B.配方法 C.公式法 D.分解因式法4.如圖,在中,,于點(diǎn),,,則的值為()A.4 B. C. D.75.圖1是一個底面為正方形的直棱柱,現(xiàn)將圖1切割成圖2的幾何體,則圖2的俯視圖是()A. B. C. D.6.隨機(jī)抽取某商場4月份5天的營業(yè)額(單位:萬元)分別為3.4,2.9,3.0,3.1,2.6,則這個商場4月份的營業(yè)額大約是()A.90萬元B.450萬元C.3萬元D.15萬元7.如圖,在平面直角坐標(biāo)系中,若干個半徑為2個單位長度,圓心角為的扇形組成一條連續(xù)的曲線,點(diǎn)從原點(diǎn)出發(fā),沿這條曲線向右上下起伏運(yùn)動,點(diǎn)在直線上的速度為每秒2個單位長度,點(diǎn)在弧線上的速度為每秒個單位長度,則2019秒時(shí),點(diǎn)的坐標(biāo)是()A. B. C. D.8.《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作,成書于約一千五百年前,其中有首歌謠:今有竿不知其長,量得影長一丈五尺,立一標(biāo)桿,長一尺五寸,影長五寸,問竿長幾何?意即:有一根竹竿不知道有多長,量出它在太陽下的影子長一丈五尺,同時(shí)立一根一尺五寸的小標(biāo)桿,它的影長五寸(提示:1丈=10尺,1尺=10寸),則竹竿的長為()A.五丈 B.四丈五尺 C.一丈 D.五尺9.如圖,熱氣球的探測器顯示,從熱氣球A看一棟高樓頂部B的仰角為300,看這棟高樓底部C的俯角為600,熱氣球A與高樓的水平距離為120m,這棟高樓BC的高度為()A.40m B.80m C.120m D.160m10.下列拋物線中,其頂點(diǎn)在反比例函數(shù)y=的圖象上的是()A.y=(x﹣4)2+3 B.y=(x﹣4)2﹣3 C.y=(x+2)2+1 D.y=(x+2)2﹣1二、填空題(每小題3分,共24分)11.在平面直角坐標(biāo)系中,點(diǎn)P(4,1)關(guān)于點(diǎn)(2,0)中心對稱的點(diǎn)的坐標(biāo)是_______.12.如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順指針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去…,若點(diǎn)A(,0)、B(0,4),則點(diǎn)B2020的橫坐標(biāo)為_____.13.如圖,在△ABC中,∠ACB=90°,點(diǎn)D、E分別在邊AC、BC上,且∠CDE=∠B,將△CDE沿DE折疊,點(diǎn)C恰好落在AB邊上的點(diǎn)F處,若AC=2BC,則的值為____.14.二次函數(shù)的圖象如圖所示,給出下列說法:①;②方程的根為,;③;④當(dāng)時(shí),隨值的增大而增大;⑤當(dāng)時(shí),.其中,正確的說法有________(請寫出所有正確說法的序號).15.若,那么△ABC的形狀是___.16.如圖,,如果,,,那么___________.17.如圖,在△ABC中,AC=6,BC=10,,點(diǎn)D是AC邊上的動點(diǎn)(不與點(diǎn)C重合),過點(diǎn)D作DE⊥BC,垂足為E,點(diǎn)F是BD的中點(diǎn),連接EF,設(shè)CD=x,△DEF的面積為S,則S與x之間的函數(shù)關(guān)系式為_______________________.18.如圖,在平行四邊形中,是邊上的點(diǎn),,連接,相交于點(diǎn),則_________.三、解答題(共66分)19.(10分)綜合與探究:已知二次函數(shù)y=﹣x2+x+2的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的左側(cè)),與y軸交于點(diǎn)C.(1)求點(diǎn)A,B,C的坐標(biāo);(2)求證:△ABC為直角三角形;(3)如圖,動點(diǎn)E,F(xiàn)同時(shí)從點(diǎn)A出發(fā),其中點(diǎn)E以每秒2個單位長度的速度沿AB邊向終點(diǎn)B運(yùn)動,點(diǎn)F以每秒個單位長度的速度沿射線AC方向運(yùn)動.當(dāng)點(diǎn)F停止運(yùn)動時(shí),點(diǎn)E隨之停止運(yùn)動.設(shè)運(yùn)動時(shí)間為t秒,連結(jié)EF,將△AEF沿EF翻折,使點(diǎn)A落在點(diǎn)D處,得到△DEF.當(dāng)點(diǎn)F在AC上時(shí),是否存在某一時(shí)刻t,使得△DCO≌△BCO?(點(diǎn)D不與點(diǎn)B重合)若存在,求出t的值;若不存在,請說明理由.20.(6分)如圖,已知是的外接圓,圓心在的外部,,,求的半徑.21.(6分)如圖所示,是某路燈在鉛垂面內(nèi)的示意圖,燈柱的高為10米,燈柱與燈桿的夾角為.路燈采用錐形燈罩,在地面上的照射區(qū)域的長為13.3米,從,兩處測得路燈的仰角分別為和,且.求燈桿的長度.22.(8分)如圖,已知AB是⊙O上的點(diǎn),C是⊙O上的點(diǎn),點(diǎn)D在AB的延長線上,∠BCD=∠BAC.(1)求證:CD是⊙O的切線;(2)若∠D=30°,BD=2,求圖中陰影部分的面積.23.(8分)已知拋物線y=﹣x2+mx+m﹣2的頂點(diǎn)為A,且經(jīng)過點(diǎn)(3,﹣3).(1)求拋物線的解析式及頂點(diǎn)A的坐標(biāo);(2)將原拋物線沿射線OA方向進(jìn)行平移得到新的拋物線,新拋物線與射線OA交于C,D兩點(diǎn),如圖,請問:在拋物線平移的過程中,線段CD的長度是否為定值?若是,請求出這個定值;若不是,請說明理由.24.(8分)已知正方形ABCD的邊長為2,中心為M,⊙O的半徑為r,圓心O在射線BD上運(yùn)動,⊙O與邊CD僅有一個公共點(diǎn)E.(1)如圖1,若圓心O在線段MD上,點(diǎn)M在⊙O上,OM=DE,判斷直線AD與⊙O的位置關(guān)系,并說明理由;(2)如圖2,⊙O與邊AD交于點(diǎn)F,連接MF,過點(diǎn)M作MF的垂線與邊CD交于點(diǎn)G,若,設(shè)點(diǎn)O與點(diǎn)M之間的距離為,EG=,當(dāng)時(shí),求的函數(shù)解析式.25.(10分)如圖,拋物線()與雙曲線相交于點(diǎn)、,已知點(diǎn)坐標(biāo),點(diǎn)在第三象限內(nèi),且的面積為3(為坐標(biāo)原點(diǎn)).(1)求實(shí)數(shù)、、的值;(2)在該拋物線的對稱軸上是否存在點(diǎn)使得為等腰三角形?若存在請求出所有的點(diǎn)的坐標(biāo),若不存在請說明理由.(3)在坐標(biāo)系內(nèi)有一個點(diǎn),恰使得,現(xiàn)要求在軸上找出點(diǎn)使得的周長最小,請求出的坐標(biāo)和周長的最小值.26.(10分)如圖,拋物線經(jīng)過點(diǎn)A(1,0),B(4,0)與軸交于點(diǎn)C.(1)求拋物線的解析式;(2)如圖①,在拋物線的對稱軸上是否存在點(diǎn)P,使得四邊形PAOC的周長最???若存在,求出四邊形PAOC周長的最小值;若不存在,請說明理由.(3)如圖②,點(diǎn)Q是線段OB上一動點(diǎn),連接BC,在線段BC上是否存在這樣的點(diǎn)M,使△CQM為等腰三角形且△BQM為直角三角形?若存在,求M的坐標(biāo);若不存在,請說明理由.

參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)從正面看得到的圖形是主視圖,可得答案.【詳解】從正面看中間的矩形的左右兩邊是虛的直線,故選:A.【點(diǎn)睛】本題考查了簡單組合體的三視圖,從正面看得到的圖形是主視圖.2、B【分析】根據(jù)根與系數(shù)的關(guān)系得出方程的兩根之和為,即可得出選項(xiàng).【詳解】解:方程x2﹣6x+5=0的兩個根之和為6,故選:B.【點(diǎn)睛】本題考查了根與系數(shù)的關(guān)系,解決問題的關(guān)鍵是熟練正確理解題意,熟練掌握一元二次方程根與系數(shù)的關(guān)系.3、D【詳解】解:方程可化為[2(5x-1)-3](5x-1)=0,即(10x-5)(5x-1)=0,根據(jù)分析可知分解因式法最為合適.故選D.4、B【分析】利用和可知,然后分別在和中利用求出BD和CD的長度,最后利用BC=BD+CD即可得出答案.【詳解】∵∴∵∴在中∵,∴在中∵,∴∴故選B【點(diǎn)睛】本題主要考查解直角三角形,掌握銳角三角函數(shù)的意義是解題的關(guān)鍵.5、D【分析】俯視圖是從物體上面看到的圖形,應(yīng)把所看到的所有棱都表示在所得圖形中.【詳解】從上面看,圖2的俯視圖是正方形,有一條對角線.

故選:D.【點(diǎn)睛】本題考查了幾何體的三種視圖,掌握定義是關(guān)鍵.注意所有的看到的棱都應(yīng)表現(xiàn)在三視圖中.6、A【解析】.所以4月份營業(yè)額約為3×30=90(萬元).7、B【分析】設(shè)第n秒運(yùn)動到Pn(n為自然數(shù))點(diǎn),根據(jù)點(diǎn)P的運(yùn)動規(guī)律找出部分Pn點(diǎn)的坐標(biāo),根據(jù)坐標(biāo)的變化找出變化規(guī)律依此規(guī)律即可得出結(jié)論.【詳解】解:作于點(diǎn)A.秒∴1秒時(shí)到達(dá)點(diǎn),2秒時(shí)到達(dá)點(diǎn),3秒時(shí)到達(dá)點(diǎn),……,.,.∴,,,,設(shè)第n秒運(yùn)動到為自然數(shù)點(diǎn),觀察,發(fā)現(xiàn)規(guī)律:,,,,,,,,,,,,故選:B.【點(diǎn)睛】本題考查了解直角三角形,弧長的計(jì)算及列代數(shù)式表示規(guī)律,先通過弧長的計(jì)算,算出每秒點(diǎn)P達(dá)到的位置,再表示出開始幾個點(diǎn)的坐標(biāo),從而找出其中的規(guī)律.8、B【分析】根據(jù)同一時(shí)刻物高與影長成正比可得出結(jié)論.【詳解】設(shè)竹竿的長度為x尺,∵竹竿的影長=一丈五尺=15尺,標(biāo)桿長=一尺五寸=1.5尺,影長五寸=0.5尺,∴,解得x=45(尺),故選B.【點(diǎn)睛】本題考查了相似三角形的應(yīng)用舉例,熟知同一時(shí)刻物高與影長成正比是解答此題的關(guān)鍵.9、D【分析】過A作AD⊥BC,垂足為D,在直角△ABD與直角△ACD中,根據(jù)三角函數(shù)的定義求得BD和CD,再根據(jù)BC=BD+CD即可求解.【詳解】解:過A作AD⊥BC,垂足為D.在Rt△ABD中,∵∠BAD=30°,AD=120m,∴BD=AD?tan30°=120×m,在Rt△ACD中,∵∠CAD=60°,AD=120m,∴CD=AD?tan60°=120×=120m,∴BC=BD+CD=m.故選D.【點(diǎn)睛】本題考查解直角三角形的應(yīng)用-仰角俯角問題.10、A【分析】根據(jù)y=得k=xy=12,所以只要點(diǎn)的橫坐標(biāo)與縱坐標(biāo)的積等于12,就在函數(shù)圖象上.【詳解】解:∵y=,∴k=xy=12,A、y=(x﹣4)2+3的頂點(diǎn)為(4,3),4×3=12,故y=(x﹣4)2+3的頂點(diǎn)在反比例函數(shù)y=的圖象上,B、y=(x﹣4)2﹣3的頂點(diǎn)為(4,﹣3),4×(﹣3)=﹣12≠12,故y=(x﹣4)2﹣3的頂點(diǎn)不在反比例函數(shù)y=的圖象上,C、y=(x+2)2+1的頂點(diǎn)為(﹣2,1),﹣2×1=﹣2≠12,故y=(x+2)2+1的頂點(diǎn)不在反比例函數(shù)y=的圖象上,D、y=(x+2)2﹣1的頂點(diǎn)為(﹣2,﹣1),﹣2×(﹣1)=2≠12,故y=(x+2)2﹣1的頂點(diǎn)不在反比例函數(shù)y=的圖象上,故選:A.【點(diǎn)睛】本題考查的知識點(diǎn)是拋物線的頂點(diǎn)坐標(biāo)以及反比例函數(shù)圖象上點(diǎn)的坐標(biāo),根據(jù)拋物線的解析式確定拋物線的頂點(diǎn)坐標(biāo)是解此題的關(guān)鍵.二、填空題(每小題3分,共24分)11、(0,-1)【分析】在平面直角坐標(biāo)系中畫出圖形,根據(jù)已知條件列出方程并求解,從而確定點(diǎn)關(guān)于點(diǎn)中心對稱的點(diǎn)的坐標(biāo).【詳解】解:連接并延長到點(diǎn),使,設(shè),過作軸于點(diǎn),如圖:在和中∴∴,∵,∴,∴,∴故答案是:【點(diǎn)睛】本題考查了一個點(diǎn)關(guān)于某個點(diǎn)對稱的點(diǎn)的坐標(biāo),關(guān)鍵在于掌握點(diǎn)的坐標(biāo)的變化規(guī)律.12、1【分析】首先根據(jù)已知求出三角形三邊長度,然后通過旋轉(zhuǎn)發(fā)現(xiàn),B、B2、B4…每偶數(shù)之間的B相差10個單位長度,根據(jù)這個規(guī)律可以求解.【詳解】由圖象可知點(diǎn)B2020在第一象限,∵OA=,OB=4,∠AOB=90°,∴AB,∴OA+AB1+B1C2=++4=10,∴B2的橫坐標(biāo)為:10,同理:B4的橫坐標(biāo)為:2×10=20,B6的橫坐標(biāo)為:3×10=30,∴點(diǎn)B2020橫坐標(biāo)為:1.故答案為:1.【點(diǎn)睛】本題考查了點(diǎn)的坐標(biāo)規(guī)律變換,通過圖形旋轉(zhuǎn),找到所有B點(diǎn)之間的關(guān)系是本題的關(guān)鍵.題目難易程度適中,可以考察學(xué)生觀察、發(fā)現(xiàn)問題的能力.13、【分析】由折疊的性質(zhì)可知,是的中垂線,根據(jù)互余角,易證;如圖(見解析),分別在中,利用他們的正切函數(shù)值即可求解.【詳解】如圖,設(shè)DE、CF的交點(diǎn)為O由折疊可知,是的中垂線,又設(shè).【點(diǎn)睛】本題考查了圖形折疊的性質(zhì)、直角三角形中的正切函數(shù),巧妙利用三個角的正切函數(shù)值相等是解題關(guān)鍵.14、①②④【分析】根據(jù)拋物線的對稱軸判斷①,根據(jù)拋物線與x軸的交點(diǎn)坐標(biāo)判斷②,根據(jù)函數(shù)圖象判斷③④⑤.【詳解】解:∵對稱軸是x=-=1,∴ab<0,①正確;∵二次函數(shù)y=ax2+bx+c的圖象與x軸的交點(diǎn)坐標(biāo)為(-1,0)、(3,0),∴方程x2+bx+c=0的根為x1=-1,x2=3,②正確;∵當(dāng)x=1時(shí),y<0,∴a+b+c<0,③錯誤;由圖象可知,當(dāng)x>1時(shí),y隨x值的增大而增大,④正確;當(dāng)y>0時(shí),x<-1或x>3,⑤錯誤,故答案為①②④.【點(diǎn)睛】本題考查的是二次函數(shù)圖象與系數(shù)之間的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點(diǎn)、拋物線與x軸交點(diǎn)的個數(shù)確定.15、等邊三角形【分析】由非負(fù)性和特殊角的三角函數(shù)值,求出∠A和∠B的度數(shù),然后進(jìn)行判斷,即可得到答案.【詳解】解:,∴,,∴∠A=60°,∠B=60°,∴∠C=60°,∴△ABC是等邊三角形;故答案為:等邊三角形.【點(diǎn)睛】本題考查了特殊角的三角函數(shù)值,非負(fù)性的應(yīng)用,解題的關(guān)鍵是熟練掌握非負(fù)數(shù)的性質(zhì),正確得到∠A和∠B的度數(shù).16、1【分析】由于l1∥l2∥l3,根據(jù)平行線分線段成比例得到,然后把數(shù)值代入求出DF.【詳解】解:∵l1∥l2∥l3,

∴,即,

∴DE=1.故答案為:1【點(diǎn)睛】本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對應(yīng)線段成比例.17、【分析】可在直角三角形CED中,根據(jù)DE、CE的長,求出△BED的面積即可解決問題.【詳解】在Rt△CDE中,,CD=x

∴∴,

∴.

∵點(diǎn)F是BD的中點(diǎn),

∴,

故答案為.【點(diǎn)睛】本題考查解直角三角形,三角形的面積等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.18、【分析】設(shè)△AEO的面積為a,由平行四邊形的性質(zhì)可知AE∥CD,可證△AEO∽△CDO,相似比為AE:CD=EO:DO=3:4,由相似三角形的性質(zhì)可求△CDO的面積,由等高的兩個三角形面積等于底邊之比,可求△ADO的面積,得出的值.【詳解】解:設(shè)△AEO的面積為a,∵四邊形ABCD是平行四邊形,∴AB∥CD,且AB=CD,∵,∴AE=CD=AB,由AB∥CD知△AEO∽△CDO,∴,∴,∵設(shè)△AEO的面積為a,,∴S△CDO=,∵△ADO和△AEO共高,且EO:DO=3:4,,∴S△ADO=,則S△ACD=S△ADO+S△CDO=,∴故答案為:.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì).關(guān)鍵是由平行線得出相似三角形,利用相似比求相似三角形的面積,等高的三角形面積.三、解答題(共66分)19、(1)點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B的坐標(biāo)為(﹣1,0),點(diǎn)C的坐標(biāo)為(0,1);(1)證明見解析;(3)t=.【分析】(1)利用x=0和y=0解方程即可求出A、B、C三點(diǎn)坐標(biāo);

(1)先計(jì)算△ABC的三邊長,根據(jù)勾股定理的逆定理可得結(jié)論;

(3)先證明△AEF∽△ACB,得∠AEF=∠ACB=90°,確定△AEF沿EF翻折后,點(diǎn)A落在x軸上點(diǎn)D處,根據(jù)△DCO≌△BCO時(shí),BO=OD,列方程4-4t=1,可得結(jié)論.【詳解】(1)解:當(dāng)y=0時(shí),﹣x+1=0,解得:x1=1,x1=4,∴點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B的坐標(biāo)為(﹣1,0),當(dāng)x=0時(shí),y=1,∴點(diǎn)C的坐標(biāo)為(0,1);(1)證明:∵A(4,0),B(﹣1,0),C(0,1),∴OA=4,OB=1,OC=1.∴AB=5,AC==,∴AC1+BC1=15=AB1,∴△ABC為直角三角形;(3)解:由(1)可知△ABC為直角三角形.且∠ACB=90°,∵AE=1t,AF=t,∴,又∵∠EAF=∠CAB,∴△AEF∽△ACB,∴∠AEF=∠ACB=90°,∴△AEF沿EF翻折后,點(diǎn)A落在x軸上點(diǎn)D處,由翻折知,DE=AE,∴AD=1AE=4t,當(dāng)△DCO≌△BCO時(shí),BO=OD,∵OD=4﹣4t,BO=1,∴4﹣4t=1,t=,即:當(dāng)t=秒時(shí),△DCO≌△BCO.【點(diǎn)睛】本題考查二次函數(shù)的性質(zhì)、拋物線與x軸的交點(diǎn)、翻折的性質(zhì)、三角形相似和全等的性質(zhì)和判定等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考??碱}型.20、4【解析】已知△ABC是等腰三角形,根據(jù)等腰三角形的性質(zhì),作于點(diǎn),則直線為的中垂線,直線過點(diǎn),在Rt△OBH中,用半徑表示出OH的長,即可用勾股定理求得半徑的長.【詳解】作于點(diǎn),則直線為的中垂線,直線過點(diǎn),,,,即,.【點(diǎn)睛】考查垂徑定理以及勾股定理,掌握垂徑定理是解題的關(guān)鍵.21、2.8米【分析】過點(diǎn)作,交于點(diǎn),過點(diǎn)作,交于點(diǎn),則米.設(shè).根據(jù)正切函數(shù)關(guān)系得,可進(jìn)一步求解.【詳解】解:由題意得,.過點(diǎn)作,交于點(diǎn),過點(diǎn)作,交于點(diǎn),則米.設(shè).,.在中,,.,..(米).,.(米).答:燈桿的長度為2.8米.【點(diǎn)睛】考核知識點(diǎn):解直角三角形應(yīng)用.構(gòu)造直角三角形,利用直角三角形性質(zhì)求解是關(guān)鍵.22、(1)證明見解析;(2)陰影部分面積為【解析】(1)連接OC,易證∠BCD=∠OCA,由于AB是直徑,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切線;(2)設(shè)⊙O的半徑為r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分別計(jì)算△OAC的面積以及扇形OAC的面積即可求出陰影部分面積.【詳解】(1)如圖,連接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直徑,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半徑,∴CD是⊙O的切線(2)設(shè)⊙O的半徑為r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2,易求S△AOC=×2×1=S扇形OAC=,∴陰影部分面積為.【點(diǎn)睛】本題考查圓的綜合問題,涉及圓的切線判定,勾股定理,含30度的直角三角形的性質(zhì),等邊三角形的性質(zhì)等知識,熟練掌握和靈活運(yùn)用相關(guān)知識是解題的關(guān)鍵.23、(1)y=﹣x2+2x,頂點(diǎn)A的坐標(biāo)是(1,1);(2)CD長為定值.【分析】(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式,根據(jù)配方法,可得頂點(diǎn)坐標(biāo);(2)根據(jù)平移規(guī)律,可設(shè)出新拋物線解析式,聯(lián)立拋物線與直線OA,可得C、D點(diǎn)的橫坐標(biāo),根據(jù)勾股定理,可得答案.【詳解】解:(1)把(3,﹣3)代入y=﹣x2+mx+m-2得:﹣3=﹣32+3m+m-2,解得m=2,∴y=﹣x2+2x,∴y=﹣x2+2x=﹣(x-1)2+1,∴頂點(diǎn)A的坐標(biāo)是(1,1);(2)易得直線OA的解析式為y=x,平移后拋物線頂點(diǎn)在直線OA上,設(shè)平移后頂點(diǎn)為(a,a),∴可設(shè)新的拋物線解析式為y=﹣(x﹣a)2+a,聯(lián)立解得:x1=a,x2=a﹣1,∴C(a-1,a-1),D(a,a),即C、D兩點(diǎn)間的橫坐標(biāo)的差為1,縱坐標(biāo)的差也為1,∴CD=∴CD長為定值.【點(diǎn)睛】本題考查了二次函數(shù)綜合題,利用待定系數(shù)法求函數(shù)解析式,再利用解析式確定頂點(diǎn)坐標(biāo);根據(jù)平移規(guī)律確定拋物線解析式,通過聯(lián)立解析式確定交點(diǎn)坐標(biāo),利用勾股定理求解.24、(1)相切,證明詳見解析;(2).【分析】(1)過O作OF⊥AD于F,連接OE,可證△ODF≌△ODE,可得OF=OE,根據(jù)相切判定即可得出:AD與相切;(2)連接MC,可證,可得DF=CG,過點(diǎn)E作EP⊥BD于P,過點(diǎn)F作FH⊥BD于H設(shè)DP=a,DH=b,由于△DHF與△DPE都是等腰直角三角形,設(shè)EP=DP=a,F(xiàn)H=DH=b,利用勾股定理:可列出方程組解得a=b,可得,.由于可得,由可得OD=a,由OD=OM-DM,可得,代入2DF+y=2可得,整理得y與x的函數(shù)解析式,由DF≤1,EG≥0,可得x的取值范圍,即可求解問題.【詳解】解:(1)直線AD與⊙O相切,理由如下:過O作OF⊥AD于F,連接OE∴∠OFD=90°在正方形ABCD中,BD平分∠ADE,∠ADE=90°∴∠FDO=∠EDO=45°∵與CD僅有一個公共點(diǎn)E∴CD與相切∴OE⊥DC,OE為半徑∴∠OED=90°又∵OD=OD∴△ODF≌△ODE∴OF=OE∵OF⊥AD、OF=OE∴AD與相切(2)連接MC在正方形ABCD中,∠BCD=90°,∠ADB=45°∵∠BCD=90°,M為正方形的中心∴MC=MD=,∠ADB=∠DCM=45°∵FM⊥MG,即∠FMG=90°且在正方形ABCD中,∠DMC=90°∴∠FMD+∠DMG=∠DMG+∠CMG∴∠FMD=∠CMG∴∴DF=CG過點(diǎn)E作EP⊥BD于P,過點(diǎn)F作FH⊥BD于H設(shè)DP=a,DH=b∵∠FDM=∠EDM=45°∴△DHF與△DPE都是等腰直角三角形∴EP=DP=a,F(xiàn)H=DH=b∵,且由(1)得∴點(diǎn)O在正方形ABCD外∴OP=OD+DP,OH=OD+DH在Rt△OPE與Rt△OHF中得:(a-b)(OD+a+b)=0∴a-b=0或OD+a+b=0∵OD+a+b>0∴a-b=0∴a=b即點(diǎn)P與點(diǎn)H重合,也即EF⊥BD,垂足為P(或H)∵DP=a,DH=b∵在Rt△DPE中,在Rt△DHF中,∴DF=DE∵CD=DE+EG+CG=2,即2DF+EG=2∴2DF+y=2∵在Rt△DPF中,,且∴在Rt△OPE與Rt△OHF中∴∴OD+a=2a∴OD=a又因?yàn)镺D=OM-DM,即∴又因?yàn)?DF+y=2∴∴∴∵DF≤1,且2DF+EG=2∴EG≥0,即y≥0∴∴∴y與x的函數(shù)解析式為【點(diǎn)睛】本題考查一次函數(shù)綜合題、正方形的性質(zhì)、三角形全等的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識,學(xué)會利用參數(shù),構(gòu)建方程以及方程組解決問題.25、(1),;(1)存在,,,,,;(3)【分析】(1)由點(diǎn)A在雙曲線上,可得k的值,進(jìn)而得出雙曲線的解析式.設(shè)(),過A作AP⊥x軸于P,BQ⊥y軸于Q,直線BQ和直線AP相交于點(diǎn)M.根據(jù)=3解方程即可得出k的值,從而得出點(diǎn)B的坐標(biāo),把A、B的坐標(biāo)代入拋物線的解析式即可得到結(jié)論;(1)拋物線對稱軸為,設(shè),則可得出;;.然后分三種情況討論即可;(3)設(shè)M(x,y).由MO=MA=MB,可求出M的坐標(biāo).作B關(guān)于y軸的對稱點(diǎn)B'.連接B'M交y軸于Q.此時(shí)△BQM的周長最小.用兩點(diǎn)間的距離公式計(jì)算即可.【詳解】(1)由知:k=xy=1×4=4,∴.設(shè)().過A作AP⊥x軸于P,BQ⊥y軸于Q,直線BQ和直線AP相交于點(diǎn)M,則S△AOP=S△BOQ=1.令:,整理得:,解得:,.∵m<0,∴m=-1,故.把A、B帶入解出:,∴.(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論