版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.把分式中的、都擴大倍,則分式的值()A.擴大倍 B.擴大倍 C.不變 D.縮小倍2.拋物線y=x2+bx+c過(-2,0),(2,0)兩點,那么拋物線對稱軸為()A.x=1 B.y軸 C.x=-1 D.x=-23.下列圖形中,是軸對稱圖形,但不是中心對稱圖形的是()A. B. C. D.4.如圖,A、D是⊙O上的兩個點,BC是直徑,若∠D=35°,則∠OAC的度數(shù)是()A.35° B.55° C.65° D.70°5.如圖,是等邊三角形,被一矩形所截,被截成三等分,EH∥BC,則四邊形的面積是的面積的:()A. B. C. D.6.如圖,點P在△ABC的邊AC上,下列條件中不能判斷△ABP∽△ACB的是()A.∠ABP=∠C B.∠APB=∠ABC C.AB2=AP?AC D.CB2=CP?CA7.如圖,為的直徑,點是弧的中點,過點作于點,延長交于點,若,,則的直徑長為()A.10 B.13 C.15 D.1.8.下列函數(shù)中,y關于x的二次函數(shù)是()A.y=ax2+bx+c B.y=x(x﹣1)C.y= D.y=(x﹣1)2﹣x29.某企業(yè)2018年初獲利潤300萬元,到2020年初計劃利潤達到507萬元.設這兩年的年利潤平均增長率為x.應列方程是()A.300(1+x)=507 B.300(1+x)2=507C.300(1+x)+300(1+x)2=507 D.300+300(1+x)+300(1+x)2=50710.如圖,矩形的面積為4,反比例函數(shù)()的圖象的一支經過矩形對角線的交點,則該反比例函數(shù)的解析式是()A. B. C. D.11.在平面直角坐標系中,以原點O為圓心的⊙O交x軸正半軸為M,P為圓上一點,坐標為(,1),則cos∠POM=()A. B. C. D.12.如圖,現(xiàn)有兩個相同的轉盤,其中一個分為紅、黃兩個相等的區(qū)域,另一個分為紅、黃、藍三個相等的區(qū)域,隨即轉動兩個轉盤,轉盤停止后指針指向相同顏色的概率為()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,△ABC是等腰直角三角形,BC是斜邊,P為△ABC內一點,將△ABP繞點A逆時針旋轉后與△ACP′重合,若AP=1,那么線段PP′的長等于_____.14.如圖1~4,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個三角形的內切圓,依此類推,圖10中有10個直角三角形的內切圓,它們的面積分別記為S1,S2,S3,…,S10,則S1+S2+S3+…+S10=.15.如圖,已知點A的坐標為(4,0),點B的坐標為(0,3),在第一象限內找一點P(a,b),使△PAB為等邊三角形,則2(a-b)=___________.16.如圖,在平面直角坐標系中,已知A(1.5,0),D(4.5,0),△ABC與△DEF位似,原點O是位似中心.若DE=7.5,則AB=_____.17.半徑為2的圓中,60°的圓心角所對的弧的弧長為_____.18.拋物線y=x2+2x﹣3的對稱軸是_____.三、解答題(共78分)19.(8分)已知關于的方程:.(1)求證:不論取何實數(shù),該方程都有兩個不相等的實數(shù)根.(2)設方程的兩根為,,若,求的值.20.(8分)已知:在Rt△ABC中,∠BAC=90°,AB=AC,點D為BC邊中點.點M為線段BC上的一個動點(不與點C,點D重合),連接AM,將線段AM繞點M順時針旋轉90°,得到線段ME,連接EC.(1)如圖1,若點M在線段BD上.①依據(jù)題意補全圖1;②求∠MCE的度數(shù).(2)如圖2,若點M在線段CD上,請你補全圖形后,直接用等式表示線段AC、CE、CM之間的數(shù)量關系.21.(8分)從甲、乙、丙、丁4名同學中隨機抽取環(huán)保志愿者.求下列事件的概率:(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.22.(10分)已知二次函數(shù)的頂點坐標為A(1,﹣4),且經過點B(3,0).(1)求該二次函數(shù)的解析式;(2)判斷點C(2,﹣3),D(﹣1,1)是否在該函數(shù)圖象上,并說明理由.23.(10分)如圖,點A(1,m2)、點B(2,m﹣1)是函數(shù)y=(其中x>0)圖象上的兩點.(1)求點A、點B的坐標及函數(shù)的解析式;(2)連接OA、OB、AB,求△AOB的面積.24.(10分)先化簡,再求值:,其中.25.(12分)關于x的方程的解為正數(shù),且關于y的不等式組有解,求符合題意的整數(shù)m.26.如圖,A(8,6)是反比例函數(shù)y=(x>0)在第一象限圖象上一點,連接OA,過A作AB∥x軸,且AB=OA(B在A右側),直線OB交反比例函數(shù)y=的圖象于點M(1)求反比例函數(shù)y=的表達式;(2)求點M的坐標;(3)設直線AM關系式為y=nx+b,觀察圖象,請直接寫出不等式nx+b﹣≤0的解集.
參考答案一、選擇題(每題4分,共48分)1、C【分析】依據(jù)分式的基本性質進行計算即可.【詳解】解:∵a、b都擴大3倍,∴∴分式的值不變.故選:C.【點睛】本題主要考查的是分式的基本性質,熟練掌握分式的基本性質是解題的關鍵.2、B【分析】由二次函數(shù)圖像與x軸的交點坐標,即可求出拋物線的對稱軸.【詳解】解:∵拋物線y=ax2+bx+c(a≠0)與x軸的交點是(-2,0)和(2,0),
∴這條拋物線的對稱軸是:x=,即對稱軸為y軸;故選:B.【點睛】本題考查了拋物線與x軸的交點問題.對于求拋物線的對稱軸的題目,可以用公式法,也可以將函數(shù)解析式化為頂點式求得,或直接利用公式x=求解.3、A【解析】軸對稱圖形一個圖形沿某一直線對折后圖形與自身重合的圖形;中心對稱圖形是指一個圖形沿某一點旋轉180°后圖形能與自身重合,只有A圖符合題中條件.故應選A.4、B【解析】解:∵∠D=35°,∴∠AOC=2∠D=70°,∴∠OAC=(180°-∠AOC)÷2=110°÷2=55°.故選B.5、B【分析】根據(jù)題意,易證△AEH∽△AFG∽△ABC,利用相似比,可求出S△AEH、S△AFG與S△ABC的面積比,從而表示出S△AEH、S△AFG,再求出四邊形EFGH的面積即可.【詳解】∵在矩形中FG∥EH,且EH∥BC,∴FG∥EH∥BC,∴△AEH∽△AFG∽△ABC,∵AB被截成三等分,∴,,∴S△AEH:S△ABC=1:9,S△AFG:S△ABC=4:9,∴S△AEH=S△ABC,S△AFG=S△ABC,∴S四邊形EFGH=S△AFG-S△AEH=S△ABC-S△ABC=S△ABC.故選:B.【點睛】本題考查相似三角形的判定與性質,明確面積比等于相似比的平方是解題的關鍵.6、D【分析】觀察圖形可得,與已經有一組角∠重合,根據(jù)三角形相似的判定定理,可以再找另一組對應角相等,或者∠的兩條邊對應成比例.注意答案中的、兩項需要按照比例的基本性質轉化為比例式再確定.【詳解】解:項,∠=∠,可以判定;項,∠=∠,可以判定;項,,,可以判定;項,,,不能判定.【點睛】本題主要考查了相似三角形的判定定理,結合圖形,按照定理找到條件是解答關鍵.7、C【分析】連接OD交AC于點G,根據(jù)垂徑定理以及弦、弧之間的關系先得出DF=AC,再由垂徑定理及推論得出DE的長以及OD⊥AC,最后在Rt△DOE中,根據(jù)勾股定理列方程求得半徑r,從而求出結果.【詳解】解:連接OD交AC于點G,∵AB⊥DF,∴,DE=EF.又點是弧的中點,∴,OD⊥AC,∴,∴AC=DF=12,∴DE=2.設的半徑為r,∴OE=AO-AE=r-3,在Rt△ODE中,根據(jù)勾股定理得,OE2+DE2=OD2,∴(r-3)2+22=r2,解得r=.∴的直徑為3.故選:C.【點睛】本題主要考查垂徑定理及其推論,弧、弦之間的關系以及勾股定理,解題的關鍵是通過作輔助線構造直角三角形,是中考??碱}型.8、B【分析】判斷一個函數(shù)是不是二次函數(shù),在關系式是整式的前提下,如果把關系式化簡整理(去括號、合并同類項)后,能寫成y=ax2+bx+c(a,b,c為常數(shù),a≠0)的形式,那么這個函數(shù)就是二次函數(shù),否則就不是.【詳解】A.當a=0時,y=ax2+bx+c=bx+c,不是二次函數(shù),故不符合題意;B.y=x(x﹣1)=x2-x,是二次函數(shù),故符合題意;C.的自變量在分母中,不是二次函數(shù),故不符合題意;D.y=(x﹣1)2﹣x2=-2x+1,不是二次函數(shù),故不符合題意;故選B.【點睛】本題考查了二次函數(shù)的定義,一般地,形如y=ax2+bx+c(a,b,c為常數(shù),a≠0)的函數(shù)叫做二次函數(shù),據(jù)此求解即可.9、B【分析】根據(jù)年利潤平均增長率,列出變化增長前后的關系方程式進行求解.【詳解】設這兩年的年利潤平均增長率為x,列方程為:300(1+x)2=507.故選B.【點睛】本題考查了由實際問題抽象出一元二次方程,解題的關鍵是怎么利用年利潤平均增長率列式計算.10、D【分析】過P點作PE⊥x軸于E,PF⊥y軸于F,根據(jù)矩形的性質得S矩形OEPF=S矩形OACB=1,然后根據(jù)反比例函數(shù)的比例系數(shù)k的幾何意義求解.【詳解】過P點作PE⊥x軸于E,PF⊥y軸于F,如圖所示:
∵四邊形OACB為矩形,點P為對角線的交點,
∴S矩形OEPF=S矩形OACB=×4=1.
∴k=-1,
所以反比例函數(shù)的解析式是:.故選:D【點睛】考查了反比例函數(shù)的比例系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.11、A【解析】試題分析:作PA⊥x軸于A,∵點P的坐標為(,1),∴OA=,PA=1,由勾股定理得,OP=2,cos∠POM==,故選A.考點:銳角三角函數(shù)12、A【解析】先畫樹狀圖展示所有6種等可能的結果數(shù),找出停止后指針指向相同顏色的結果數(shù),然后根據(jù)概率公式計算.【詳解】畫樹狀圖如下:由樹狀圖知,共有6種等可能結果,其中轉盤停止后指針指向相同顏色的有2種結果,所以轉盤停止后指針指向相同顏色的概率為=,故選:A.【點睛】本題考查了列表法或樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結果求出n,再從中選出符合事件A或B的結果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.二、填空題(每題4分,共24分)13、.【解析】解:∵△ABP繞點A逆時針旋轉后與△ACP′重合,∴∠PAP′=∠BAC=90°,AP=AP′=1,∴PP′=.故答案為.14、π.【解析】圖1,過點O做OE⊥AC,OF⊥BC,垂足為E.
F,則∠OEC=∠OFC=90°∵∠C=90°∴四邊形OECF為矩形∵OE=OF∴矩形OECF為正方形設圓O的半徑為r,則OE=OF=r,AD=AE=3?r,BD=4?r∴3?r+4?r=5,r==1∴S1=π×12=π圖2,由S△ABC=×3×4=×5×CD∴CD=由勾股定理得:AD=,BD=5?=,由(1)得:⊙O的半徑=,⊙E的半徑=,∴S1+S2=π×()2+π×()2=π.圖3,由S△CDB=××=×4×MD∴MD=,由勾股定理得:CM=,MB=4?=,由(1)得:⊙O的半徑=,⊙E的半徑=,∴⊙F的半徑=,∴S1+S2+S3=π×()2+π×()2+π×()2=π15、【分析】根據(jù)A、B坐標求出直線AB的解析式后,求得AB中點M的坐標,連接PM,在等邊△PAB中,M為AB中點,所以PM⊥AB,,再求出直線PM的解析式,求出點P坐標;在Rt△PAM中,AP=AB=5,,即且a>0,解得a>0,即,將a代入直線PM的解析式中求出b的值,最后計算2(a-b)的值即可;【詳解】解:∵A(4,0),B(0,3),∴AB=5,設,∴,∴,∴,∵A(4,0)B(0,3),∴AB中點,連接PM,在等邊△PAB中,M為AB中點,∴PM⊥AB,,∴,∴設直線PM的解析式為,∴,∴,∴,∴,在Rt△PAM中,AP=AB=5,∴,∴,∴,∴,∵a>0,∴,∴,∴;【點睛】本題主要考查了一次函數(shù)的綜合應用,掌握一次函數(shù)是解題的關鍵.16、2.1.【分析】利用以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或-k得到位似比為,然后根據(jù)相似的性質計算AB的長.【詳解】解:∵A(1.1,0),D(4.1,0),∴==,∵△ABC與△DEF位似,原點O是位似中心,∴==,∴AB=DE=×7.1=2.1.故答案為2.1.【點睛】本題考查了位似變換:在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或-k.17、【解析】根據(jù)弧長公式可得:=,故答案為.18、x=﹣1【分析】直接利用二次函數(shù)對稱軸公式求出答案.【詳解】拋物線y=x2+2x﹣3的對稱軸是:直線x=﹣=﹣=﹣1.故答案為:直線x=﹣1.【點睛】此題主要考查了二次函數(shù)的性質,正確記憶二次函數(shù)對稱軸公式是解題關鍵.三、解答題(共78分)19、(1)詳見解析;(2).【分析】(1)要證明方程都有兩個不相等的實數(shù)根,必須證明根的判別式總大于0.
(2)利用韋達定理求得x?+x?和x?x?的值,代入,求a的值.【詳解】解:(1)∵,∴不論取何實數(shù),該方程都有兩個不相等的實數(shù)根.(2)由韋達定理得:,∴,解得:,經檢驗知符合題意,∴.【點睛】本題考查了一元二次方程根的判別式與根的情況,要證明方程都有兩個不相等的實數(shù)根,必須證明根的判別式總大于0;還考查了利用韋達定理求值的問題,首先把給給出的等式化成與(x?+x?)、x?x?有關的式子,代入求值.20、(1)①見解析;②∠MCE=∠F=45°;(2)【分析】(1)①依據(jù)題意補全圖即可;②過點M作BC邊的垂線交CA延長線于點F,利用同角的余角相等,得到∠FMA=∠CME,再通過等腰三角形的判定得到FM=MC,再通過判斷,得到∠MCE的度數(shù).(2)通過證明,得到AF=EC,將轉化為,再在Rt△FMC中,利用邊角關系求出FC=,即可得到.【詳解】(1)①補全圖1:②解:過點M作BC邊的垂線交CA延長線于點F∵FM⊥BC∴∠FMC=90°∴∠FMA+∠AMC=90°∵將線段AM繞點M順時針旋轉90°,得到線段ME∴∠AME=90°,AM=ME∴∠CME+∠AMC=90°∴∠FMA=∠CME∵∠BAC=90°,AB=AC,∴∠FCM=45°∴∠F=∠FCM=45°∴FM=MC在△FMA和△CME中∴∴∠MCE=∠F=45°(2)解:過點M作BC邊的垂線交CA延長線于點F∵FM⊥BC∴∠FMC=90°∴∠FME+∠EMC=90°∵將線段AM繞點M順時針旋轉90°,得到線段ME∴∠AME=90°,AM=ME∴∠FME+∠AMF=90°∴∠EMC=∠AMF∵∠BAC=90°,AB=AC,∴∠FCM=45°∴∠MFC=90°-∠FCM=45°∴FM=MC在△FMA和△CME中∴∴AF=EC∴∵∠FCM=45°,∠FMC=90°∴FC=∴綜上所述,【點睛】本題是旋轉圖形考查,掌握旋轉前后不變的量是解答此題的關鍵,涉及到的知識點相似的判定及性質、等腰三角形的性質等.21、(1)14;(2)1【解析】試題分析:(1)根據(jù)概率的求法,找準兩點:①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.因此,由從甲、乙、丙3名同學中隨機抽取環(huán)保志愿者,直接利用概率公式求解即可求得答案.(2)利用列舉法可得抽取2名,可得:甲乙,甲丙,乙丙,共3種等可能的結果,甲在其中的有2種情況,然后利用概率公式求解即可求得答案.試題解析:(1)∵從甲、乙、丙3名同學中隨機抽取環(huán)保志愿者,∴抽取1名,恰好是甲的概率為:13(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3種等可能的結果,甲在其中的有2種情況,∴抽取2名,甲在其中的概率為:23考點:概率.22、(1);(2)C在,D不在,見解析【分析】(1)根據(jù)點A的坐標設出二次函數(shù)的頂點式,再代入B的值即可得出答案;(2)將C和D的值代入函數(shù)解析式即可得出答案.【詳解】解:(1)設二次函數(shù)的解析式是,∵二次函數(shù)的頂點坐標為∴又經過點∴代入得:解得:∴函數(shù)解析式為:(2)將x=2代入解析式得∴點在該函數(shù)圖象上將x=-1代入解析式得∴點不在該函數(shù)圖象上【點睛】本題考查的是待定系數(shù)法求函數(shù)解析式,解題關鍵是根據(jù)頂點坐標設出頂點式.23、(1)A(1,2),B(2,1),函數(shù)的解析式為y=;(2)【分析】(1)根據(jù)反比例函數(shù)圖象上的點的坐標特征,得到k=m2=2(m﹣1),解得m的值,即可求得點A、點B的坐標及函數(shù)的解析式;(2)由反比例函數(shù)系數(shù)k的幾何意義,根據(jù)S△AOB=S△AOM+S梯形AMNB﹣S△BON=S梯形AMNB即可求解.【詳解】(1)點A(1,m2)、點B(2,m﹣1)是函數(shù)y=(其中x>0)圖象上的兩點,∴k=m2=2(m﹣1),解得:m=2,k=2,∴A(1,2),B(2,1),函數(shù)的解析式為:y=;(2)作AM⊥x軸于M,BN⊥x軸于N,∴S△AOM=S△BON=k,∴S△AOB=S△AOM+S梯形AMNB﹣S△BON=S梯形AMNB=(2+1)(2﹣1)=.【點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度公園景觀建設材料采購合同3篇
- 2024年舊房改造裝修合同樣本
- 2024年度公寓樓窗簾選購與布置服務合同3篇
- 2024年離婚心理咨詢服務合同
- 2024年礦山物流承包合同(新編)3篇
- 2024年幼兒園食堂安全衛(wèi)生食材采購合同3篇
- 2024年私人珠寶首飾買賣合同范本(含鑒定服務)3篇
- 2024年度室外附屬工程勞務分包與環(huán)保風險評估合同3篇
- 2024版抵押房屋買賣交易風險評估合同范本3篇
- 2024版石油化工設備維修保養(yǎng)與應急響應合同3篇
- 礦業(yè)技術經濟學教學課件匯總完整版電子教案全書整套課件幻燈片(最新)
- 小學預防性侵害講座
- DRAM內存顆粒測試簡介PPT課件(PPT 37頁)
- 《視神經炎》ppt課件
- 應急預案演練記錄表范例
- 工程派工單模板
- 帶頸對焊法蘭尺寸與質量
- 二氧化氯復合解堵技術
- 國家開放大學《C語言程序設計》形考任務1-4參考答案
- 佛山批發(fā)市場匯總
- WordA4信紙(A4橫條直接打印版)
評論
0/150
提交評論