版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
第第頁專題八概率與統(tǒng)計考點五年考情(2020-2024)命題趨勢考點01分類、分步計數(shù)原理2024年新課標Ⅱ卷:方格表選方格、列舉法.關于排列、組合與二項式定理的考查,往往以客觀題形式考查.1.基本原理的應用;2.基本原理與排列的綜合問題;3.基本原理與組合的綜合問題;4.基本原理、排列、組合綜合問題;5.二項展開式指定項(系數(shù));6.二項式系數(shù)的性質(zhì);7.數(shù)學文化與楊輝三角.考點02“在不在”“鄰不鄰”排列問題2022年新課標Ⅱ卷:站成一排參加文藝匯演.考點03計數(shù)原理與組合問題2020年新高考Ⅰ卷:志愿者安排、分步完成;2023年新課標Ⅰ卷:選課方案、分類分步;2023年新課標Ⅱ卷:分層抽樣、分步完成.考點04排列組合綜合問題2020年新高考Ⅱ卷:志愿者安排、先選后排.考點05二項式定理及其應用2022年新高考I卷:兩個因式乘積、求項的系數(shù).考點06概率的計算2022年新高考I卷:古典概型;2023年新高考Ⅱ卷:相互獨立事件、互斥事件的概率計算.根據(jù)高考命題改革的要求,命題數(shù)量減少,因此,命題的綜合性會進一步增強,關于概率統(tǒng)計的考查,預計會同卷出現(xiàn)客觀題、主觀題.其中,主觀題會以隨機變量數(shù)字特征的應用為主,與現(xiàn)實社會相聯(lián)系,與其它知識交匯,體現(xiàn)綜合性、應用性.1.概率的計算問題:古典概型是基礎,條件概率、乘法公式與全概率公式的應用,獨立性與條件概率綜合問題;2.隨機抽樣、統(tǒng)計圖表及其應用、數(shù)據(jù)數(shù)字特征的計算及其應用等,其中頻率分布表、頻率分布直方圖是重點;3.線性回歸問題也許會成為“黑馬”、獨立性檢驗;4.兩點分布、二項分布、超幾何分布、正態(tài)分布及其數(shù)字特征,考查方式可能分別以客觀題、主觀題兩種.考點07判斷事件的獨立性2021年新高考I卷考點08統(tǒng)計圖表的應用及數(shù)字特征的計算2020年新高考Ⅰ卷:容斥原理;2020年新高考Ⅱ卷:折線圖的應用;2021年新高考I卷:兩組樣本數(shù)據(jù)數(shù)字特征比較;2021年新高考II卷:一組數(shù)據(jù)離散程度;2023年新課標Ⅰ卷:一組樣本數(shù)據(jù)的數(shù)字特征;2023年新課標Ⅱ卷:頻率分布直方圖及其應用;2024年新課標Ⅱ卷:頻率分布表及其應用.考點09頻率分布表與獨立性檢驗2020年新課標Ⅰ卷考點10正態(tài)分布及其應用2021年新高考II卷:正態(tài)分布密度曲線的特征應用;2022年新課標Ⅱ卷:正態(tài)分布區(qū)間上的概率;2024年新課標I卷:正態(tài)分布的原則以及正態(tài)分布對稱性的應用.考點11隨機變量的分布列、數(shù)學期望的應用2021年新高考I卷:“一帶一路”知識競賽,答題選擇決策;2021年新高考II卷:微生物繁殖、期望計算、證明、實際應用,與導數(shù)的應用交匯;2023年新課標Ⅰ卷:兩點分布、期望、與等比數(shù)列交匯;2024年新課標Ⅰ卷:比賽得分、概率、期望;2024年新課標Ⅱ卷:對立事件、獨立事件、計算相關概率和期望、決策.考點12頻率分布直方圖與條件概率2022年新高考II卷:流行病學調(diào)查.考點13獨立性檢驗與條件概率2022年新高考I卷:地方性疾病與當?shù)鼐用裥l(wèi)生習慣的關系.考點14概率的“新定義”問題2020年新高考Ⅰ卷:信息熵、隨機變量及其“信息熵”的性質(zhì).考點01分類、分步計數(shù)原理1.(2024年新課標全國Ⅱ卷數(shù)學真題)在如圖的4×4的方格表中選4個方格,要求每行和每列均恰有一個方格被選中,則共有種選法,在所有符合上述要求的選法中,選中方格中的4個數(shù)之和的最大值是.【答案】24112【分析】由題意可知第一、二、三、四列分別有4、3、2、1個方格可選;利用列舉法寫出所有的可能結(jié)果,即可求解.【詳解】由題意知,選4個方格,每行和每列均恰有一個方格被選中,則第一列有4個方格可選,第二列有3個方格可選,第三列有2個方格可選,第四列有1個方格可選,所以共有種選法;每種選法可標記為,分別表示第一、二、三、四列的數(shù)字,則所有的可能結(jié)果為:,,,,所以選中的方格中,的4個數(shù)之和最大,為.故答案為:24;112【點睛】關鍵點點睛:解決本題的關鍵是確定第一、二、三、四列分別有4、3、2、1個方格可選,利用列舉法寫出所有的可能結(jié)果.考點02“在不在”“鄰不鄰”排列問題2.(2022年新高考全國II卷數(shù)學真題)有甲、乙、丙、丁、戊5名同學站成一排參加文藝匯演,若甲不站在兩端,丙和丁相鄰,則不同排列方式共有(
)A.12種 B.24種 C.36種 D.48種【答案】B【分析】利用捆綁法處理丙丁,用插空法安排甲,利用排列組合與計數(shù)原理即可得解【詳解】因為丙丁要在一起,先把丙丁捆綁,看做一個元素,連同乙,戊看成三個元素排列,有種排列方式;為使甲不在兩端,必須且只需甲在此三個元素的中間兩個位置任選一個位置插入,有2種插空方式;注意到丙丁兩人的順序可交換,有2種排列方式,故安排這5名同學共有:種不同的排列方式,故選:B考點03計數(shù)原理與組合問題3.(2020年新高考全國卷Ⅰ數(shù)學試題)6名同學到甲、乙、丙三個場館做志愿者,每名同學只去1個場館,甲場館安排1名,乙場館安排2名,丙場館安排3名,則不同的安排方法共有(
)A.120種 B.90種C.60種 D.30種【答案】C【分析】分別安排各場館的志愿者,利用組合計數(shù)和乘法計數(shù)原理求解.【詳解】首先從名同學中選名去甲場館,方法數(shù)有;然后從其余名同學中選名去乙場館,方法數(shù)有;最后剩下的名同學去丙場館.故不同的安排方法共有種.故選:C4.(2023年新課標全國Ⅱ卷數(shù)學真題)某學校為了解學生參加體育運動的情況,用比例分配的分層隨機抽樣方法作抽樣調(diào)查,擬從初中部和高中部兩層共抽取60名學生,已知該校初中部和高中部分別有400名和200名學生,則不同的抽樣結(jié)果共有(
).A.種 B.種C.種 D.種【答案】D【分析】利用分層抽樣的原理和組合公式即可得到答案.【詳解】根據(jù)分層抽樣的定義知初中部共抽取人,高中部共抽取,根據(jù)組合公式和分步計數(shù)原理則不同的抽樣結(jié)果共有種.故選:D.5.(2023年新課標全國Ⅰ卷數(shù)學真題)某學校開設了4門體育類選修課和4門藝術類選修課,學生需從這8門課中選修2門或3門課,并且每類選修課至少選修1門,則不同的選課方案共有種(用數(shù)字作答).【答案】64【分析】分類討論選修2門或3門課,對選修3門,再討論具體選修課的分配,結(jié)合組合數(shù)運算求解.【詳解】(1)當從8門課中選修2門,則不同的選課方案共有種;(2)當從8門課中選修3門,①若體育類選修課1門,則不同的選課方案共有種;②若體育類選修課2門,則不同的選課方案共有種;綜上所述:不同的選課方案共有種.故答案為:64.考點04排列組合綜合問題6.(2020年新高考全國卷Ⅱ數(shù)學試題)要安排3名學生到2個鄉(xiāng)村做志愿者,每名學生只能選擇去一個村,每個村里至少有一名志愿者,則不同的安排方法共有(
)A.2種 B.3種 C.6種 D.8種【答案】C【分析】首先將3名學生分成兩個組,然后將2組學生安排到2個村即可.【詳解】第一步,將3名學生分成兩個組,有種分法第二步,將2組學生安排到2個村,有種安排方法所以,不同的安排方法共有種故選:C考點05二項式定理及其應用7.(2022年新高考全國I卷數(shù)學真題)的展開式中的系數(shù)為(用數(shù)字作答).【答案】-28【分析】可化為,結(jié)合二項式展開式的通項公式求解.【詳解】因為,所以的展開式中含的項為,的展開式中的系數(shù)為-28故答案為:-28考點06概率的計算8.(2022年新高考全國I卷數(shù)學真題)從2至8的7個整數(shù)中隨機取2個不同的數(shù),則這2個數(shù)互質(zhì)的概率為(
)A. B. C. D.【答案】D【分析】由古典概型概率公式結(jié)合組合、列舉法即可得解.【詳解】從2至8的7個整數(shù)中隨機取2個不同的數(shù),共有種不同的取法,若兩數(shù)不互質(zhì),不同的取法有:,共7種,故所求概率.故選:D.9.(2023年新課標全國Ⅱ卷數(shù)學真題)在信道內(nèi)傳輸0,1信號,信號的傳輸相互獨立.發(fā)送0時,收到1的概率為,收到0的概率為;發(fā)送1時,收到0的概率為,收到1的概率為.考慮兩種傳輸方案:單次傳輸和三次傳輸.單次傳輸是指每個信號只發(fā)送1次,三次傳輸是指每個信號重復發(fā)送3次.收到的信號需要譯碼,譯碼規(guī)則如下:單次傳輸時,收到的信號即為譯碼;三次傳輸時,收到的信號中出現(xiàn)次數(shù)多的即為譯碼(例如,若依次收到1,0,1,則譯碼為1).A.采用單次傳輸方案,若依次發(fā)送1,0,1,則依次收到l,0,1的概率為B.采用三次傳輸方案,若發(fā)送1,則依次收到1,0,1的概率為C.采用三次傳輸方案,若發(fā)送1,則譯碼為1的概率為D.當時,若發(fā)送0,則采用三次傳輸方案譯碼為0的概率大于采用單次傳輸方案譯碼為0的概率【答案】ABD【分析】利用相互獨立事件的概率公式計算判斷AB;利用相互獨立事件及互斥事件的概率計算判斷C;求出兩種傳輸方案的概率并作差比較判斷D作答.【詳解】對于A,依次發(fā)送1,0,1,則依次收到l,0,1的事件是發(fā)送1接收1、發(fā)送0接收0、發(fā)送1接收1的3個事件的積,它們相互獨立,所以所求概率為,A正確;對于B,三次傳輸,發(fā)送1,相當于依次發(fā)送1,1,1,則依次收到l,0,1的事件,是發(fā)送1接收1、發(fā)送1接收0、發(fā)送1接收1的3個事件的積,它們相互獨立,所以所求概率為,B正確;對于C,三次傳輸,發(fā)送1,則譯碼為1的事件是依次收到1,1,0、1,0,1、0,1,1和1,1,1的事件和,它們互斥,由選項B知,所以所求的概率為,C錯誤;對于D,由選項C知,三次傳輸,發(fā)送0,則譯碼為0的概率,單次傳輸發(fā)送0,則譯碼為0的概率,而,因此,即,D正確.故選:ABD【點睛】關鍵點睛:利用概率加法公式及乘法公式求概率,把要求概率的事件分拆成兩兩互斥事件的和,相互獨立事件的積是解題的關鍵.考點07判斷事件的獨立性10.(2021年全國新高考I卷數(shù)學試題)有6個相同的球,分別標有數(shù)字1,2,3,4,5,6,從中有放回的隨機取兩次,每次取1個球,甲表示事件“第一次取出的球的數(shù)字是1”,乙表示事件“第二次取出的球的數(shù)字是2”,丙表示事件“兩次取出的球的數(shù)字之和是8”,丁表示事件“兩次取出的球的數(shù)字之和是7”,則(
)A.甲與丙相互獨立 B.甲與丁相互獨立C.乙與丙相互獨立 D.丙與丁相互獨立【答案】B【分析】根據(jù)獨立事件概率關系逐一判斷【詳解】,故選:B【點睛】判斷事件是否獨立,先計算對應概率,再判斷是否成立考點08統(tǒng)計圖表的應用及數(shù)字特征的計算11.(2020年新高考全國卷Ⅰ數(shù)學試題)某中學的學生積極參加體育鍛煉,其中有96%的學生喜歡足球或游泳,60%的學生喜歡足球,82%的學生喜歡游泳,則該中學既喜歡足球又喜歡游泳的學生數(shù)占該校學生總數(shù)的比例是(
)A.62% B.56%C.46% D.42%【答案】C【分析】由容斥原理即可得解..【詳解】由題意,該中學既喜歡足球又喜歡游泳的學生數(shù)占該校學生總數(shù)的比例為所以該中學既喜歡足球又喜歡游泳的學生數(shù)占該校學生總數(shù)的比例為.故選:C.12.(2024年新課標全國Ⅱ卷數(shù)學真題)某農(nóng)業(yè)研究部門在面積相等的100塊稻田上種植一種新型水稻,得到各塊稻田的畝產(chǎn)量(單位:kg)并整理如下表畝產(chǎn)量[900,950)[950,1000)[1000,1050)[1050,1100)[1100,1150)[1150,1200)頻數(shù)61218302410根據(jù)表中數(shù)據(jù),下列結(jié)論中正確的是(
)A.100塊稻田畝產(chǎn)量的中位數(shù)小于1050kgB.100塊稻田中畝產(chǎn)量低于1100kg的稻田所占比例超過80%C.100塊稻田畝產(chǎn)量的極差介于200kg至300kg之間D.100塊稻田畝產(chǎn)量的平均值介于900kg至1000kg之間【答案】C【分析】計算出前三段頻數(shù)即可判斷A;計算出低于1100kg的頻數(shù),再計算比例即可判斷B;根據(jù)極差計算方法即可判斷C;根據(jù)平均值計算公式即可判斷D.【詳解】對于A,根據(jù)頻數(shù)分布表可知,,所以畝產(chǎn)量的中位數(shù)不小于,故A錯誤;對于B,畝產(chǎn)量不低于的頻數(shù)為,所以低于的稻田占比為,故B錯誤;對于C,稻田畝產(chǎn)量的極差最大為,最小為,故C正確;對于D,由頻數(shù)分布表可得,平均值為,故D錯誤.故選;C.13.(多選)(2020年新高考全國卷Ⅱ數(shù)學試題)我國新冠肺炎疫情進入常態(tài)化,各地有序推進復工復產(chǎn),下面是某地連續(xù)11天復工復產(chǎn)指數(shù)折線圖,下列說法正確的是A.這11天復工指數(shù)和復產(chǎn)指數(shù)均逐日增加;B.這11天期間,復產(chǎn)指數(shù)增量大于復工指數(shù)的增量;C.第3天至第11天復工復產(chǎn)指數(shù)均超過80%;D.第9天至第11天復產(chǎn)指數(shù)增量大于復工指數(shù)的增量;【答案】CD【分析】注意到折線圖中有遞減部分,可判定A錯誤;注意考查第1天和第11天的復工復產(chǎn)指數(shù)的差的大小,可判定B錯誤;根據(jù)圖象,結(jié)合復工復產(chǎn)指數(shù)的意義和增量的意義可以判定CD正確.【詳解】由圖可知,第1天到第2天復工指數(shù)減少,第7天到第8天復工指數(shù)減少,第10天到第11復工指數(shù)減少,第8天到第9天復產(chǎn)指數(shù)減少,故A錯誤;由圖可知,第一天的復產(chǎn)指標與復工指標的差大于第11天的復產(chǎn)指標與復工指標的差,所以這11天期間,復產(chǎn)指數(shù)增量小于復工指數(shù)的增量,故B錯誤;由圖可知,第3天至第11天復工復產(chǎn)指數(shù)均超過80%,故C正確;由圖可知,第9天至第11天復產(chǎn)指數(shù)增量大于復工指數(shù)的增量,故D正確;14.(多選)(2021年全國新高考II卷數(shù)學試題)下列統(tǒng)計量中,能度量樣本的離散程度的是(
)A.樣本的標準差 B.樣本的中位數(shù)C.樣本的極差 D.樣本的平均數(shù)【答案】AC【分析】考查所給的選項哪些是考查數(shù)據(jù)的離散程度,哪些是考查數(shù)據(jù)的集中趨勢即可確定正確選項.【詳解】由標準差的定義可知,標準差考查的是數(shù)據(jù)的離散程度;由中位數(shù)的定義可知,中位數(shù)考查的是數(shù)據(jù)的集中趨勢;由極差的定義可知,極差考查的是數(shù)據(jù)的離散程度;由平均數(shù)的定義可知,平均數(shù)考查的是數(shù)據(jù)的集中趨勢;故選:AC.15.(多選)(2021年全國新高考I卷數(shù)學試題)有一組樣本數(shù)據(jù),,…,,由這組數(shù)據(jù)得到新樣本數(shù)據(jù),,…,,其中(為非零常數(shù),則(
)A.兩組樣本數(shù)據(jù)的樣本平均數(shù)相同B.兩組樣本數(shù)據(jù)的樣本中位數(shù)相同C.兩組樣本數(shù)據(jù)的樣本標準差相同D.兩組樣本數(shù)據(jù)的樣本極差相同【答案】CD【分析】A、C利用兩組數(shù)據(jù)的線性關系有、,即可判斷正誤;根據(jù)中位數(shù)、極差的定義,結(jié)合已知線性關系可判斷B、D的正誤.【詳解】A:且,故平均數(shù)不相同,錯誤;B:若第一組中位數(shù)為,則第二組的中位數(shù)為,顯然不相同,錯誤;C:,故方差相同,正確;D:由極差的定義知:若第一組的極差為,則第二組的極差為,故極差相同,正確;故選:CD16.(多選)(2023年新課標全國Ⅰ卷數(shù)學真題)有一組樣本數(shù)據(jù),其中是最小值,是最大值,則(
)A.的平均數(shù)等于的平均數(shù)B.的中位數(shù)等于的中位數(shù)C.的標準差不小于的標準差D.的極差不大于的極差【答案】BD【分析】根據(jù)題意結(jié)合平均數(shù)、中位數(shù)、標準差以及極差的概念逐項分析判斷.【詳解】對于選項A:設的平均數(shù)為,的平均數(shù)為,則,因為沒有確定的大小關系,所以無法判斷的大小,例如:,可得;例如,可得;例如,可得;故A錯誤;對于選項B:不妨設,可知的中位數(shù)等于的中位數(shù)均為,故B正確;對于選項C:因為是最小值,是最大值,則的波動性不大于的波動性,即的標準差不大于的標準差,例如:,則平均數(shù),標準差,,則平均數(shù),標準差,顯然,即;故C錯誤;對于選項D:不妨設,則,當且僅當時,等號成立,故D正確;故選:BD.17.(2023年新課標全國Ⅱ卷數(shù)學真題)某研究小組經(jīng)過研究發(fā)現(xiàn)某種疾病的患病者與未患病者的某項醫(yī)學指標有明顯差異,經(jīng)過大量調(diào)查,得到如下的患病者和未患病者該指標的頻率分布直方圖:
利用該指標制定一個檢測標準,需要確定臨界值c,將該指標大于c的人判定為陽性,小于或等于c的人判定為陰性.此檢測標準的漏診率是將患病者判定為陰性的概率,記為;誤診率是將未患病者判定為陽性的概率,記為.假設數(shù)據(jù)在組內(nèi)均勻分布,以事件發(fā)生的頻率作為相應事件發(fā)生的概率.(1)當漏診率%時,求臨界值c和誤診率;(2)設函數(shù),當時,求的解析式,并求在區(qū)間的最小值.【答案】(1),;(2),最小值為.【分析】(1)根據(jù)題意由第一個圖可先求出,再根據(jù)第二個圖求出的矩形面積即可解出;(2)根據(jù)題意確定分段點,即可得出的解析式,再根據(jù)分段函數(shù)的最值求法即可解出.【詳解】(1)依題可知,左邊圖形第一個小矩形的面積為,所以,所以,解得:,.(2)當時,;當時,,故,所以在區(qū)間的最小值為.考點09頻率分布表與獨立性檢驗18.(2020年新高考全國卷Ⅰ數(shù)學試題)為加強環(huán)境保護,治理空氣污染,環(huán)境監(jiān)測部門對某市空氣質(zhì)量進行調(diào)研,隨機抽查了天空氣中的和濃度(單位:),得下表:(1)估計事件“該市一天空氣中濃度不超過,且濃度不超過”的概率;(2)根據(jù)所給數(shù)據(jù),完成下面的列聯(lián)表:(3)根據(jù)(2)中的列聯(lián)表,判斷是否有的把握認為該市一天空氣中濃度與濃度有關?附:,【答案】(1);(2)答案見解析;(3)有.【分析】(1)根據(jù)表格中數(shù)據(jù)以及古典概型的概率公式可求得結(jié)果;(2)根據(jù)表格中數(shù)據(jù)可得列聯(lián)表;(3)計算出,結(jié)合臨界值表可得結(jié)論.【詳解】(1)由表格可知,該市100天中,空氣中的濃度不超過75,且濃度不超過150的天數(shù)有天,所以該市一天中,空氣中的濃度不超過75,且濃度不超過150的概率為;(2)由所給數(shù)據(jù),可得列聯(lián)表為:合計641680101020合計7426100(3)根據(jù)列聯(lián)表中的數(shù)據(jù)可得,因為根據(jù)臨界值表可知,有的把握認為該市一天空氣中濃度與濃度有關.考點10正態(tài)分布及其應用19.(2021年全國新高考II卷數(shù)學試題)某物理量的測量結(jié)果服從正態(tài)分布,下列結(jié)論中不正確的是(
)A.越小,該物理量在一次測量中在的概率越大B.該物理量在一次測量中大于10的概率為0.5C.該物理量在一次測量中小于9.99與大于10.01的概率相等D.該物理量在一次測量中落在與落在的概率相等【答案】D【分析】由正態(tài)分布密度曲線的特征逐項判斷即可得解.【詳解】對于A,為數(shù)據(jù)的方差,所以越小,數(shù)據(jù)在附近越集中,所以測量結(jié)果落在內(nèi)的概率越大,故A正確;對于B,由正態(tài)分布密度曲線的對稱性可知該物理量一次測量大于10的概率為,故B正確;對于C,由正態(tài)分布密度曲線的對稱性可知該物理量一次測量結(jié)果大于的概率與小于的概率相等,故C正確;對于D,因為該物理量一次測量結(jié)果落在的概率與落在的概率不同,所以一次測量結(jié)果落在的概率與落在的概率不同,故D錯誤.故選:D.20.(多選)(2024年新課標全國Ⅰ卷數(shù)學真題)隨著“一帶一路”國際合作的深入,某茶葉種植區(qū)多措并舉推動茶葉出口.為了解推動出口后的畝收入(單位:萬元)情況,從該種植區(qū)抽取樣本,得到推動出口后畝收入的樣本均值,樣本方差,已知該種植區(qū)以往的畝收入服從正態(tài)分布,假設推動出口后的畝收入服從正態(tài)分布,則(
)(若隨機變量Z服從正態(tài)分布,)A. B.C. D.【答案】BC【分析】根據(jù)正態(tài)分布的原則以及正態(tài)分布的對稱性即可解出.【詳解】依題可知,,所以,故,C正確,D錯誤;因為,所以,因為,所以,而,B正確,A錯誤,故選:BC.21.(2022年新高考全國II卷數(shù)學真題)已知隨機變量X服從正態(tài)分布,且,則.【答案】/.【分析】根據(jù)正態(tài)分布曲線的性質(zhì)即可解出.【詳解】因為,所以,因此.故答案為:.考點11隨機變量的分布列、數(shù)學期望的應用22.(2024年新課標全國Ⅰ卷數(shù)學真題)甲、乙兩人各有四張卡片,每張卡片上標有一個數(shù)字,甲的卡片上分別標有數(shù)字1,3,5,7,乙的卡片上分別標有數(shù)字2,4,6,8,兩人進行四輪比賽,在每輪比賽中,兩人各自從自己持有的卡片中隨機選一張,并比較所選卡片上數(shù)字的大小,數(shù)字大的人得1分,數(shù)字小的人得0分,然后各自棄置此輪所選的卡片(棄置的卡片在此后的輪次中不能使用).則四輪比賽后,甲的總得分不小于2的概率為.【答案】/0.5【分析】將每局的得分分別作為隨機變量,然后分析其和隨機變量即可.【詳解】設甲在四輪游戲中的得分分別為,四輪的總得分為.對于任意一輪,甲乙兩人在該輪出示每張牌的概率都均等,其中使得甲獲勝的出牌組合有六種,從而甲在該輪獲勝的概率,所以.從而.記.如果甲得0分,則組合方式是唯一的:必定是甲出1,3,5,7分別對應乙出2,4,6,8,所以;如果甲得3分,則組合方式也是唯一的:必定是甲出1,3,5,7分別對應乙出8,2,4,6,所以.而的所有可能取值是0,1,2,3,故,.所以,,兩式相減即得,故.所以甲的總得分不小于2的概率為.故答案為:.【點睛】關鍵點點睛:本題的關鍵在于將問題轉(zhuǎn)化為隨機變量問題,利用期望的可加性得到等量關系,從而避免繁瑣的列舉.23.(2021年全國新高考I卷數(shù)學試題)某學校組織“一帶一路”知識競賽,有A,B兩類問題,每位參加比賽的同學先在兩類問題中選擇一類并從中隨機抽取一個問題回答,若回答錯誤則該同學比賽結(jié)束;若回答正確則從另一類問題中再隨機抽取一個問題回答,無論回答正確與否,該同學比賽結(jié)束.A類問題中的每個問題回答正確得20分,否則得0分;B類問題中的每個問題回答正確得80分,否則得0分,已知小明能正確回答A類問題的概率為0.8,能正確回答B(yǎng)類問題的概率為0.6,且能正確回答問題的概率與回答次序無關.(1)若小明先回答A類問題,記為小明的累計得分,求的分布列;(2)為使累計得分的期望最大,小明應選擇先回答哪類問題?并說明理由.【答案】(1)見解析;(2)類.【分析】(1)通過題意分析出小明累計得分的所有可能取值,逐一求概率列分布列即可.(2)與(1)類似,找出先回答類問題的數(shù)學期望,比較兩個期望的大小即可.【詳解】(1)由題可知,的所有可能取值為,,.;;.所以的分布列為(2)由(1)知,.若小明先回答問題,記為小明的累計得分,則的所有可能取值為,,.;;.所以.因為,所以小明應選擇先回答類問題.24.(2021年全國新高考II卷數(shù)學試題)一種微生物群體可以經(jīng)過自身繁殖不斷生存下來,設一個這種微生物為第0代,經(jīng)過一次繁殖后為第1代,再經(jīng)過一次繁殖后為第2代……,該微生物每代繁殖的個數(shù)是相互獨立的且有相同的分布列,設X表示1個微生物個體繁殖下一代的個數(shù),.(1)已知,求;(2)設p表示該種微生物經(jīng)過多代繁殖后臨近滅絕的概率,p是關于x的方程:的一個最小正實根,求證:當時,,當時,;(3)根據(jù)你的理解說明(2)問結(jié)論的實際含義.【答案】(1)1;(2)見解析;(3)見解析.【分析】(1)利用公式計算可得.(2)利用導數(shù)討論函數(shù)的單調(diào)性,結(jié)合及極值點的范圍可得的最小正零點.(3)利用期望的意義及根的范圍可得相應的理解說明.【詳解】(1).(2)設,因為,故,若,則,故.,因為,,故有兩個不同零點,且,且時,;時,;故在,上為增函數(shù),在上為減函數(shù),若,因為在為增函數(shù)且,而當時,因為在上為減函數(shù),故,故為的一個最小正實根,若,因為且在上為減函數(shù),故1為的一個最小正實根,綜上,若,則.若,則,故.此時,,故有兩個不同零點,且,且時,;時,;故在,上為增函數(shù),在上為減函數(shù),而,故,又,故在存在一個零點,且.所以為的一個最小正實根,此時,故當時,.(3)意義:每一個該種微生物繁殖后代的平均數(shù)不超過1,則若干代必然滅絕,若繁殖后代的平均數(shù)超過1,則若干代后被滅絕的概率小于1.25.(2023年新課標全國Ⅰ卷數(shù)學真題)甲、乙兩人投籃,每次由其中一人投籃,規(guī)則如下:若命中則此人繼續(xù)投籃,若末命中則換為對方投籃.無論之前投籃情況如何,甲每次投籃的命中率均為0.6,乙每次投籃的命中率均為0.8.由抽簽確定第1次投籃的人選,第1次投籃的人是甲、乙的概率各為0.5.(1)求第2次投籃的人是乙的概率;(2)求第次投籃的人是甲的概率;(3)已知:若隨機變量服從兩點分布,且,則.記前次(即從第1次到第次投籃)中甲投籃的次數(shù)為,求.【答案】(1)(2)(3)【分析】(1)根據(jù)全概率公式即可求出;(2)設,由題意可得,根據(jù)數(shù)列知識,構(gòu)造等比數(shù)列即可解出;(3)先求出兩點分布的期望,再根據(jù)題中的結(jié)論以及等比數(shù)列的求和公式即可求出.【詳解】(1)記“第次投籃的人是甲”為事件,“第次投籃的人是乙”為事件,所以,.(2)設,依題可知,,則,即,構(gòu)造等比數(shù)列,設,解得,則,又,所以是首項為,公比為的等比數(shù)列,即.(3)因為,,所以當時,,故.26.(2024年新課標全國Ⅱ卷數(shù)學真題)某投籃比賽分為兩個階段,每個參賽隊由兩名隊員組成,比賽具體規(guī)則如下:第一階段由參賽隊中一名隊員投籃3次,若3次都未投中,則該隊被淘汰,比賽成績?yōu)?分;若至少投中一次,則該隊進入第二階段.第二階段由該隊的另一名隊員投籃3次,每次投籃投中得5分,未投中得0分.該隊的比賽成績?yōu)榈诙A段的得分總和.某參賽隊由甲、乙兩名隊員組成,設甲每次投中的概率為p,乙每次投中的概率為q,各次投中與否相互獨立.(1)若,,甲參加第一階段比賽,求甲、乙所在隊的比賽成績不少于5分的概率.(2)假設,(i)為使得甲、乙所在隊的比賽成績?yōu)?5分的概率最大,應該由誰參加第一階段比賽?(ii)為使得甲、乙所在隊的比賽成績的數(shù)學期望最大,應該由誰參加第一階段比賽?【答案】(1)(2)(i)由甲參加第一階段比賽;(i)由甲參加第一階段比賽;【分析】(1)根據(jù)對立事件的求法和獨立事件的乘法公式即可得到答案;(2)(i)首先各自計算出,,再作差因式分解即可判斷;(ii)首先得到和的所有可能取值,再按步驟列出分布列,計算出各自期望,再次作差比較大小即可.【詳解】(1)甲、乙所在隊的比賽成績不少于5分,則甲第一階段至少投中1次,乙第二階段也至少投中1次,比賽成績不少于5分的概率.(2)(i)若甲先參加第一階段比賽,則甲、乙所在隊的比賽成績?yōu)?5分的概率為,若乙先參加第一階段比賽,則甲、乙所在隊的比賽成績?yōu)?5分的概率為,,,,應該由甲參加第一階段比賽.(ii)若甲先參加第一階段比賽,比賽成績的所有可能取值為0,5,10,15,,,,,記乙先參加第一階段比賽,比賽成績的所有可能取值為0,5,10,15,同理,因為,則,,則,應該由甲參加第一階段比賽.【點睛】關鍵點點睛:本題第二問的關鍵是計算出相關概率和期望,采用作差法并因式分解從而比較出大小關系,最后得到結(jié)論.考點12頻率分布直方圖與條件概率27.(2022年新高考全國II卷數(shù)學真題)在某地區(qū)進行流行病學調(diào)查,隨機調(diào)查了100位某種疾病患者的年齡,得到如下的樣本數(shù)據(jù)的頻率分布直方圖:
(1)估計該地區(qū)這種疾病患者的平均年齡(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);(2)估計該地區(qū)一位這種疾病患者的年齡位于區(qū)間的概率;(3)已知該地區(qū)這種疾病的患病率為,該地區(qū)年齡位于區(qū)間的人口占該地區(qū)總?cè)丝诘?從該地區(qū)中任選一人,若此人的年齡位于區(qū)間,求此人患這種疾病的概率.(以樣本數(shù)據(jù)中患者的年齡位于各區(qū)間的頻率作為患者的年齡位于該區(qū)間的概率,精確到0.0001).【答案】(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廚房包間出租合同范例
- 壁燈低價出售合同范例
- 工程 安裝合同范例
- 培訓講座合同范例
- 投資合同范例公章
- 土地耕種合同范例
- 施工合同及安全合同范例
- 商業(yè)空調(diào)工程合同范例
- 房屋賓館轉(zhuǎn)讓合同范例
- 建筑補償合同范例
- FZ/T 90097-2017染整機械軋車線壓力
- 《湯姆·索亞歷險記》湯姆·索亞刷墻的精彩片段市賽獲獎
- 武漢大學2023年824法學基礎B考研真題(回憶版)
- 你比劃-我來猜(適合小學生)課件
- 《我國二手車市場的現(xiàn)狀及前景【論文】4600字》
- 新概念英語第二冊單詞表(打印版)
- 學生籃球考核標準
- 未來社區(qū)綜合解決方案:打造社區(qū)全生活鏈服務構(gòu)建未來社區(qū)全業(yè)態(tài)
- 賬號租賃合同
- 抗震支架施工方法
- 《紅樓夢》作品簡介名著導讀 國學經(jīng)典 PPT模板
評論
0/150
提交評論