2023-2024學(xué)年金華市十八中學(xué)中考數(shù)學(xué)考前最后一卷含解析_第1頁
2023-2024學(xué)年金華市十八中學(xué)中考數(shù)學(xué)考前最后一卷含解析_第2頁
2023-2024學(xué)年金華市十八中學(xué)中考數(shù)學(xué)考前最后一卷含解析_第3頁
2023-2024學(xué)年金華市十八中學(xué)中考數(shù)學(xué)考前最后一卷含解析_第4頁
2023-2024學(xué)年金華市十八中學(xué)中考數(shù)學(xué)考前最后一卷含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年金華市十八中學(xué)中考數(shù)學(xué)考前最后一卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,已知AB∥CD,DE⊥AC,垂足為E,∠A=120°,則∠D的度數(shù)為()A.30° B.60° C.50° D.40°2.如果關(guān)于的不等式組的整數(shù)解僅有、,那么適合這個(gè)不等式組的整數(shù)、組成的有序數(shù)對(duì)共有()A.個(gè) B.個(gè) C.個(gè) D.個(gè)3.下圖是某幾何體的三視圖,則這個(gè)幾何體是()A.棱柱 B.圓柱 C.棱錐 D.圓錐4.某品牌的飲水機(jī)接通電源就進(jìn)入自動(dòng)程序:開機(jī)加熱到水溫100℃,停止加熱,水溫開始下降,此時(shí)水溫(℃)與開機(jī)后用時(shí)(min)成反比例關(guān)系,直至水溫降至30℃,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動(dòng)開機(jī),重復(fù)上述自動(dòng)程序.若在水溫為30℃時(shí),接通電源后,水溫y(℃)和時(shí)間x(min)的關(guān)系如圖所示,水溫從100℃降到35℃所用的時(shí)間是()A.27分鐘 B.20分鐘 C.13分鐘 D.7分鐘5.如圖,由5個(gè)完全相同的小正方體組合成一個(gè)立體圖形,它的左視圖是()A. B. C. D.6.如圖,一個(gè)梯子AB長2.5米,頂端A靠在墻AC上,這時(shí)梯子下端B與墻角C距離為1.5米,梯子滑動(dòng)后停在DE的位置上,測得BD長為0.9米,則梯子頂端A下落了()A.0.9米 B.1.3米 C.1.5米 D.2米7.下列四張印有汽車品牌標(biāo)志圖案的卡片中,是中心對(duì)稱圖形的卡片是()A. B. C. D.8.如圖,已知Rt△ABC中,∠BAC=90°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使點(diǎn)D落在射線CA上,DE的延長線交BC于F,則∠CFD的度數(shù)為()A.80° B.90° C.100° D.120°9.分式的值為0,則x的取值為()A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-110.一副直角三角板如圖放置,其中,,,點(diǎn)F在CB的延長線上若,則等于()A.35° B.25° C.30° D.15°11.﹣的絕對(duì)值是()A.﹣ B. C.﹣2 D.212.一枚質(zhì)地均勻的骰子,其六個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6,投擲一次,朝上一面的數(shù)字是偶數(shù)的概率為().A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,在Rt△ABC中,AC=4,BC=3,將Rt△ABC以點(diǎn)A為中心,逆時(shí)針旋轉(zhuǎn)60°得到△ADE,則線段BE的長度為_____.14.填在下面各正方形中的四個(gè)數(shù)之間都有相同的規(guī)律,根據(jù)這種規(guī)律,m的值是.15.若關(guān)于x的方程x2-x+sinα=0有兩個(gè)相等的實(shí)數(shù)根,則銳角α的度數(shù)為___.16.計(jì)算:=_______.17.如圖,在矩形ABCD中,AD=2,CD=1,連接AC,以對(duì)角線AC為邊,按逆時(shí)針方向作矩形ABCD的相似矩形AB1C1C,再連接AC1,以對(duì)角線AC1為邊作矩形AB1C1C的相似矩形AB2C2C1,…,按此規(guī)律繼續(xù)下去,則矩形ABnCnCn-1的面積為________________.18.同一個(gè)圓的內(nèi)接正方形和正三角形的邊心距的比為_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)2018年大唐芙蓉園新春燈會(huì)以“鼓舞中華”為主題,既有新年韻味,又結(jié)合“一帶一路”展示了絲綢之路上古今文化經(jīng)貿(mào)繁榮的盛況。小麗的爸爸買了兩張門票,她和各個(gè)兩人都想去觀看,可是爸爸只能帶一人去,于是讀九年級(jí)的哥哥提議用他們3人吃飯的彩色筷子做游戲(筷子除顏色不同,其余均相同),其中小麗的筷子顏色是紅色,哥哥的是銀色,爸爸的是白色,將3人的3雙款子全部放在一個(gè)不透明的筷簍里搖勻,小麗隨機(jī)從筷簍里取出一根,記下顏色放回,然后哥哥同樣從筷簍里取出一根,若兩人取出的筷子顏色相同則小麗去,若不同,則哥哥去。(1)求小麗隨機(jī)取出一根筷子是紅色的概率;(2)請(qǐng)用列表或畫樹狀圖的方法求出小隨爸爸去看新春燈會(huì)的概率。20.(6分)如圖有A、B兩個(gè)大小均勻的轉(zhuǎn)盤,其中A轉(zhuǎn)盤被分成3等份,B轉(zhuǎn)盤被分成4等份,并在每一份內(nèi)標(biāo)上數(shù)字.小明和小紅同時(shí)各轉(zhuǎn)動(dòng)其中一個(gè)轉(zhuǎn)盤,轉(zhuǎn)盤停止后(當(dāng)指針指在邊界線時(shí)視為無效,重轉(zhuǎn)),若將A轉(zhuǎn)盤指針指向的數(shù)字記作一次函數(shù)表達(dá)式中的k,將B轉(zhuǎn)盤指針指向的數(shù)字記作一次函數(shù)表達(dá)式中的b.請(qǐng)用列表或畫樹狀圖的方法寫出所有的可能;求一次函數(shù)y=kx+b的圖象經(jīng)過一、二、四象限的概率.21.(6分)如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)P是拋物線上在第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),且點(diǎn)P的橫坐標(biāo)為t.(1)求拋物線的表達(dá)式;(2)設(shè)拋物線的對(duì)稱軸為l,l與x軸的交點(diǎn)為D.在直線l上是否存在點(diǎn)M,使得四邊形CDPM是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.(3)如圖2,連接BC,PB,PC,設(shè)△PBC的面積為S.①求S關(guān)于t的函數(shù)表達(dá)式;②求P點(diǎn)到直線BC的距離的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).22.(8分)如圖,在一個(gè)平臺(tái)遠(yuǎn)處有一座古塔,小明在平臺(tái)底部的點(diǎn)C處測得古塔頂部B的仰角為60°,在平臺(tái)上的點(diǎn)E處測得古塔頂部的仰角為30°.已知平臺(tái)的縱截面為矩形DCFE,DE=2米,DC=20米,求古塔AB的高(結(jié)果保留根號(hào))23.(8分)如圖①,在四邊形ABCD中,AC⊥BD于點(diǎn)E,AB=AC=BD,點(diǎn)M為BC中點(diǎn),N為線段AM上的點(diǎn),且MB=MN.(1)求證:BN平分∠ABE;(2)若BD=1,連結(jié)DN,當(dāng)四邊形DNBC為平行四邊形時(shí),求線段BC的長;(3)如圖②,若點(diǎn)F為AB的中點(diǎn),連結(jié)FN、FM,求證:△MFN∽△BDC.24.(10分)如圖,在?ABCD中,AB=4,AD=5,tanA=,點(diǎn)P從點(diǎn)A出發(fā),沿折線AB﹣BC以每秒1個(gè)單位長度的速度向中點(diǎn)C運(yùn)動(dòng),過點(diǎn)P作PQ⊥AB,交折線AD﹣DC于點(diǎn)Q,將線段PQ繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,得到線段PR,連接QR.設(shè)△PQR與?ABCD重疊部分圖形的面積為S(平方單位),點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(秒).(1)當(dāng)點(diǎn)R與點(diǎn)B重合時(shí),求t的值;(2)當(dāng)點(diǎn)P在BC邊上運(yùn)動(dòng)時(shí),求線段PQ的長(用含有t的代數(shù)式表示);(3)當(dāng)點(diǎn)R落在?ABCD的外部時(shí),求S與t的函數(shù)關(guān)系式;(4)直接寫出點(diǎn)P運(yùn)動(dòng)過程中,△PCD是等腰三角形時(shí)所有的t值.25.(10分)某藥廠銷售部門根據(jù)市場調(diào)研結(jié)果,對(duì)該廠生產(chǎn)的一種新型原料藥未來兩年的銷售進(jìn)行預(yù)測,并建立如下模型:設(shè)第t個(gè)月該原料藥的月銷售量為P(單位:噸),P與t之間存在如圖所示的函數(shù)關(guān)系,其圖象是函數(shù)P=(0<t≤8)的圖象與線段AB的組合;設(shè)第t個(gè)月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Q與t之間滿足如下關(guān)系:Q=(1)當(dāng)8<t≤24時(shí),求P關(guān)于t的函數(shù)解析式;(2)設(shè)第t個(gè)月銷售該原料藥的月毛利潤為w(單位:萬元)①求w關(guān)于t的函數(shù)解析式;②該藥廠銷售部門分析認(rèn)為,336≤w≤513是最有利于該原料藥可持續(xù)生產(chǎn)和銷售的月毛利潤范圍,求此范圍所對(duì)應(yīng)的月銷售量P的最小值和最大值.26.(12分)如圖,點(diǎn)D為△ABC邊上一點(diǎn),請(qǐng)用尺規(guī)過點(diǎn)D,作△ADE,使點(diǎn)E在AC上,且△ADE與△ABC相似.(保留作圖痕跡,不寫作法,只作出符合條件的一個(gè)即可)27.(12分)如圖,AB是⊙O的直徑,BC⊥AB,垂足為點(diǎn)B,連接CO并延長交⊙O于點(diǎn)D、E,連接AD并延長交BC于點(diǎn)F.(1)試判斷∠CBD與∠CEB是否相等,并證明你的結(jié)論;(2)求證:(3)若BC=AB,求tan∠CDF的值.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】分析:根據(jù)平行線的性質(zhì)求出∠C,求出∠DEC的度數(shù),根據(jù)三角形內(nèi)角和定理求出∠D的度數(shù)即可.詳解:∵AB∥CD,∴∠A+∠C=180°.∵∠A=120°,∴∠C=60°.∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.故選A.點(diǎn)睛:本題考查了平行線的性質(zhì)和三角形內(nèi)角和定理的應(yīng)用,能根據(jù)平行線的性質(zhì)求出∠C的度數(shù)是解答此題的關(guān)鍵.2、D【解析】

求出不等式組的解集,根據(jù)已知求出1<≤2、3≤<4,求出2<a≤4、9≤b<12,即可得出答案.【詳解】解不等式2x?a≥0,得:x≥,解不等式3x?b≤0,得:x≤,∵不等式組的整數(shù)解僅有x=2、x=3,則1<≤2、3≤<4,解得:2<a≤4、9≤b<12,則a=3時(shí),b=9、10、11;當(dāng)a=4時(shí),b=9、10、11;所以適合這個(gè)不等式組的整數(shù)a、b組成的有序數(shù)對(duì)(a,b)共有6個(gè),故選:D.【點(diǎn)睛】本題考查了解一元一次不等式組,不等式組的整數(shù)解,有序?qū)崝?shù)對(duì)的應(yīng)用,解此題的根據(jù)是求出a、b的值.3、D【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】由俯視圖易得幾何體的底面為圓,還有表示錐頂?shù)膱A心,符合題意的只有圓錐.故選D.【點(diǎn)睛】本題考查由三視圖確定幾何體的形狀,主要考查學(xué)生空間想象能力以及對(duì)立體圖形的認(rèn)識(shí).4、C【解析】

先利用待定系數(shù)法求函數(shù)解析式,然后將y=35代入,從而求解.【詳解】解:設(shè)反比例函數(shù)關(guān)系式為:,將(7,100)代入,得k=700,∴,將y=35代入,解得;∴水溫從100℃降到35℃所用的時(shí)間是:20-7=13,故選C.【點(diǎn)睛】本題考查反比例函數(shù)的應(yīng)用,利用數(shù)形結(jié)合思想解題是關(guān)鍵.5、B【解析】試題分析:從左面看易得第一層有2個(gè)正方形,第二層最左邊有一個(gè)正方形.故選B.考點(diǎn):簡單組合體的三視圖.6、B【解析】試題分析:要求下滑的距離,顯然需要分別放到兩個(gè)直角三角形中,運(yùn)用勾股定理求得AC和CE的長即可.解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,∴AC=2,∵BD=0.9,∴CD=2.1.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.2.故選B.考點(diǎn):勾股定理的應(yīng)用.7、C【解析】試題分析:由中心對(duì)稱圖形的概念可知,這四個(gè)圖形中只有第三個(gè)是中心對(duì)稱圖形,故答案選C.考點(diǎn):中心對(duì)稱圖形的概念.8、B【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根據(jù)三角形外角性質(zhì)得出∠CFD=∠B+∠BEF,代入求出即可.【詳解】解:∵將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故選:B.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,三角形內(nèi)角和定理,三角形外角性質(zhì)的應(yīng)用,掌握旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵.9、A【解析】

分式的值為2的條件是:(2)分子等于2;(2)分母不為2.兩個(gè)條件需同時(shí)具備,缺一不可.據(jù)此可以解答本題.【詳解】∵原式的值為2,∴,∴(x-2)(x+3)=2,即x=2或x=-3;又∵|x|-2≠2,即x≠±2.∴x=-3.故選:A.【點(diǎn)睛】此題考查的是對(duì)分式的值為2的條件的理解,該類型的題易忽略分母不為2這個(gè)條件.10、D【解析】

直接利用三角板的特點(diǎn),結(jié)合平行線的性質(zhì)得出∠BDE=45°,進(jìn)而得出答案.【詳解】解:由題意可得:∠EDF=30°,∠ABC=45°,

∵DE∥CB,

∴∠BDE=∠ABC=45°,

∴∠BDF=45°-30°=15°.

故選D.【點(diǎn)睛】此題主要考查了平行線的性質(zhì),根據(jù)平行線的性質(zhì)得出∠BDE的度數(shù)是解題關(guān)鍵.11、B【解析】

根據(jù)求絕對(duì)值的法則,直接計(jì)算即可解答.【詳解】,故選:B.【點(diǎn)睛】本題主要考查求絕對(duì)值的法則,掌握負(fù)數(shù)的絕對(duì)值等于它的相反數(shù),是解題的關(guān)鍵.12、B【解析】

朝上的數(shù)字為偶數(shù)的有3種可能,再根據(jù)概率公式即可計(jì)算.【詳解】依題意得P(朝上一面的數(shù)字是偶數(shù))=故選B.【點(diǎn)睛】此題主要考查概率的計(jì)算,解題的關(guān)鍵是熟知概率公式進(jìn)行求解.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解析】

連接CE,作EF⊥BC于F,根據(jù)旋轉(zhuǎn)變換的性質(zhì)得到∠CAE=60°,AC=AE,根據(jù)等邊三角形的性質(zhì)得到CE=AC=4,∠ACE=60°,根據(jù)直角三角形的性質(zhì)、勾股定理計(jì)算即可.【詳解】解:連接CE,作EF⊥BC于F,

由旋轉(zhuǎn)變換的性質(zhì)可知,∠CAE=60°,AC=AE,

∴△ACE是等邊三角形,

∴CE=AC=4,∠ACE=60°,

∴∠ECF=30°,

∴EF=CE=2,

由勾股定理得,CF==,

∴BF=BC-CF=,

由勾股定理得,BE==,

故答案為:.【點(diǎn)睛】本題考查的是旋轉(zhuǎn)變換的性質(zhì)、等邊三角形的判定和性質(zhì),掌握旋轉(zhuǎn)變換對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等、對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角是解題的關(guān)鍵.14、2【解析】試題分析:分析前三個(gè)正方形可知,規(guī)律為右上和左下兩個(gè)數(shù)的積減左上的數(shù)等于右下的數(shù),且左上,左下,右上三個(gè)數(shù)是相鄰的偶數(shù).因此,圖中陰影部分的兩個(gè)數(shù)分別是左下是12,右上是1.解:分析可得圖中陰影部分的兩個(gè)數(shù)分別是左下是12,右上是1,則m=12×1﹣10=2.故答案為2.考點(diǎn):規(guī)律型:數(shù)字的變化類.15、30°【解析】試題解析:∵關(guān)于x的方程有兩個(gè)相等的實(shí)數(shù)根,∴解得:∴銳角α的度數(shù)為30°;故答案為30°.16、3【解析】

先把化成,然后再合并同類二次根式即可得解.【詳解】原式=2.故答案為【點(diǎn)睛】本題考查了二次根式的計(jì)算:先把各二次根式化為最簡二次根式,再進(jìn)行然后合并同類二次根式.17、或【解析】試題分析:AC===,因?yàn)榫匦味枷嗨?,且每相鄰兩個(gè)矩形的相似比=,∴=2×1=2,=,===,...,==...===.故答案為.考點(diǎn):1.相似多邊形的性質(zhì);2.勾股定理;3.規(guī)律型;4.矩形的性質(zhì);5.綜合題.18、【解析】

先畫出同一個(gè)圓的內(nèi)接正方形和內(nèi)接正三角形,設(shè)⊙O的半徑為R,求出正方形的邊心距和正三角形的邊心距,再求出比值即可.【詳解】設(shè)⊙O的半徑為r,⊙O的內(nèi)接正方形ABCD,如圖,過O作OQ⊥BC于Q,連接OB、OC,即OQ為正方形ABCD的邊心距,∵四邊形BACD是正方形,⊙O是正方形ABCD的外接圓,∴O為正方形ABCD的中心,∴∠BOC=90°,∵OQ⊥BC,OB=CO,∴QC=BQ,∠COQ=∠BOQ=45°,∴OQ=OC×cos45°=R;設(shè)⊙O的內(nèi)接正△EFG,如圖,過O作OH⊥FG于H,連接OG,即OH為正△EFG的邊心距,∵正△EFG是⊙O的外接圓,∴∠OGF=∠EGF=30°,∴OH=OG×sin30°=R,∴OQ:OH=(R):(R)=:1,故答案為:1.【點(diǎn)睛】本題考查了正多邊形與圓、解直角三角形,等邊三角形的性質(zhì)、正方形的性質(zhì)等知識(shí)點(diǎn),能綜合運(yùn)用知識(shí)點(diǎn)進(jìn)行推理和計(jì)算是解此題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1);(2).【解析】

(1)直接利用概率公式計(jì)算;(2)畫樹狀圖展示所有36種等可能的結(jié)果數(shù),再找出兩人取出的筷子顏色相同的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】(1)小麗隨機(jī)取出一根筷子是紅色的概率==;(2)畫樹狀圖為:共有36種等可能的結(jié)果數(shù),其中兩人取出的筷子顏色相同的結(jié)果數(shù)為12,所以小麗隨爸爸去看新春燈會(huì)的概率==.【點(diǎn)睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后根據(jù)概率公式計(jì)算事件A或事件B的概率.20、(1)答案見解析;(2).【解析】

(1)k可能的取值為-1、-2、-3,b可能的取值為-1、-2、3、4,所以將所有等可能出現(xiàn)的情況用列表方式表示出來即可.(2)判斷出一次函數(shù)y=kx+b經(jīng)過一、二、四象限時(shí)k、b的正負(fù),在列表中找出滿足條件的情況,利用概率的基本概念即可求出一次函數(shù)y=kx+b經(jīng)過一、二、四象限的概率.【詳解】解:(1)列表如下:所有等可能的情況有12種;(2)一次函數(shù)y=kx+b的圖象經(jīng)過一、二、四象限時(shí),k<0,b>0,情況有4種,則P==.21、(1)y=﹣x2+2x+1.(2)當(dāng)t=2時(shí),點(diǎn)M的坐標(biāo)為(1,6);當(dāng)t≠2時(shí),不存在,理由見解析;(1)y=﹣x+1;P點(diǎn)到直線BC的距離的最大值為,此時(shí)點(diǎn)P的坐標(biāo)為(,).【解析】【分析】(1)由點(diǎn)A、B的坐標(biāo),利用待定系數(shù)法即可求出拋物線的表達(dá)式;(2)連接PC,交拋物線對(duì)稱軸l于點(diǎn)E,由點(diǎn)A、B的坐標(biāo)可得出對(duì)稱軸l為直線x=1,分t=2和t≠2兩種情況考慮:當(dāng)t=2時(shí),由拋物線的對(duì)稱性可得出此時(shí)存在點(diǎn)M,使得四邊形CDPM是平行四邊形,再根據(jù)點(diǎn)C的坐標(biāo)利用平行四邊形的性質(zhì)可求出點(diǎn)P、M的坐標(biāo);當(dāng)t≠2時(shí),不存在,利用平行四邊形對(duì)角線互相平分結(jié)合CE≠PE可得出此時(shí)不存在符合題意的點(diǎn)M;(1)①過點(diǎn)P作PF∥y軸,交BC于點(diǎn)F,由點(diǎn)B、C的坐標(biāo)利用待定系數(shù)法可求出直線BC的解析式,根據(jù)點(diǎn)P的坐標(biāo)可得出點(diǎn)F的坐標(biāo),進(jìn)而可得出PF的長度,再由三角形的面積公式即可求出S關(guān)于t的函數(shù)表達(dá)式;②利用二次函數(shù)的性質(zhì)找出S的最大值,利用勾股定理可求出線段BC的長度,利用面積法可求出P點(diǎn)到直線BC的距離的最大值,再找出此時(shí)點(diǎn)P的坐標(biāo)即可得出結(jié)論.【詳解】(1)將A(﹣1,0)、B(1,0)代入y=﹣x2+bx+c,得,解得:,∴拋物線的表達(dá)式為y=﹣x2+2x+1;(2)在圖1中,連接PC,交拋物線對(duì)稱軸l于點(diǎn)E,∵拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(1,0)兩點(diǎn),∴拋物線的對(duì)稱軸為直線x=1,當(dāng)t=2時(shí),點(diǎn)C、P關(guān)于直線l對(duì)稱,此時(shí)存在點(diǎn)M,使得四邊形CDPM是平行四邊形,∵拋物線的表達(dá)式為y=﹣x2+2x+1,∴點(diǎn)C的坐標(biāo)為(0,1),點(diǎn)P的坐標(biāo)為(2,1),∴點(diǎn)M的坐標(biāo)為(1,6);當(dāng)t≠2時(shí),不存在,理由如下:若四邊形CDPM是平行四邊形,則CE=PE,∵點(diǎn)C的橫坐標(biāo)為0,點(diǎn)E的橫坐標(biāo)為0,∴點(diǎn)P的橫坐標(biāo)t=1×2﹣0=2,又∵t≠2,∴不存在;(1)①在圖2中,過點(diǎn)P作PF∥y軸,交BC于點(diǎn)F.設(shè)直線BC的解析式為y=mx+n(m≠0),將B(1,0)、C(0,1)代入y=mx+n,得,解得:,∴直線BC的解析式為y=﹣x+1,∵點(diǎn)P的坐標(biāo)為(t,﹣t2+2t+1),∴點(diǎn)F的坐標(biāo)為(t,﹣t+1),∴PF=﹣t2+2t+1﹣(﹣t+1)=﹣t2+1t,∴S=PF?OB=﹣t2+t=﹣(t﹣)2+;②∵﹣<0,∴當(dāng)t=時(shí),S取最大值,最大值為.∵點(diǎn)B的坐標(biāo)為(1,0),點(diǎn)C的坐標(biāo)為(0,1),∴線段BC=,∴P點(diǎn)到直線BC的距離的最大值為,此時(shí)點(diǎn)P的坐標(biāo)為(,).【點(diǎn)睛】本題考查了待定系數(shù)法求一次(二次)函數(shù)解析式、平行四邊形的判定與性質(zhì)、三角形的面積、一次(二次)函數(shù)圖象上點(diǎn)的坐標(biāo)特征以及二次函數(shù)的性質(zhì),解題的關(guān)鍵是:(1)由點(diǎn)的坐標(biāo),利用待定系數(shù)法求出拋物線表達(dá)式;(2)分t=2和t≠2兩種情況考慮;(1)①利用三角形的面積公式找出S關(guān)于t的函數(shù)表達(dá)式;②利用二次函數(shù)的性質(zhì)結(jié)合面積法求出P點(diǎn)到直線BC的距離的最大值.22、古塔AB的高為(10+2)米.【解析】試題分析:延長EF交AB于點(diǎn)G.利用AB表示出EG,AC.讓EG-AC=1即可求得AB長.試題解析:如圖,延長EF交AB于點(diǎn)G.設(shè)AB=x米,則BG=AB﹣2=(x﹣2)米.則EG=(AB﹣2)÷tan∠BEG=(x﹣2),CA=AB÷tan∠ACB=x.則CD=EG﹣AC=(x﹣2)﹣x=1.解可得:x=10+2.答:古塔AB的高為(10+2)米.23、(1)證明見解析;(2);(3)證明見解析.【解析】分析:(1)由AB=AC知∠ABC=∠ACB,由等腰三角形三線合一知AM⊥BC,從而根據(jù)∠MAB+∠ABC=∠EBC+∠ACB知∠MAB=∠EBC,再由△MBN為等腰直角三角形知∠EBC+∠NBE=∠MAB+∠ABN=∠MNB=45°可得證;(2)設(shè)BM=CM=MN=a,知DN=BC=2a,證△ABN≌△DBN得AN=DN=2a,Rt△ABM中利用勾股定理可得a的值,從而得出答案;(3)F是AB的中點(diǎn)知MF=AF=BF及∠FMN=∠MAB=∠CBD,再由即可得證.詳解:(1)∵AB=AC,∴∠ABC=∠ACB,∵M(jìn)為BC的中點(diǎn),∴AM⊥BC,在Rt△ABM中,∠MAB+∠ABC=90°,在Rt△CBE中,∠EBC+∠ACB=90°,∴∠MAB=∠EBC,又∵M(jìn)B=MN,∴△MBN為等腰直角三角形,∴∠MNB=∠MBN=45°,∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,∴∠NBE=∠ABN,即BN平分∠ABE;(2)設(shè)BM=CM=MN=a,∵四邊形DNBC是平行四邊形,∴DN=BC=2a,在△ABN和△DBN中,∵,∴△ABN≌△DBN(SAS),∴AN=DN=2a,在Rt△ABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,解得:a=±(負(fù)值舍去),∴BC=2a=;(3)∵F是AB的中點(diǎn),∴在Rt△MAB中,MF=AF=BF,∴∠MAB=∠FMN,又∵∠MAB=∠CBD,∴∠FMN=∠CBD,∵,∴,∴△MFN∽△BDC.點(diǎn)睛:本題主要考查相似形的綜合問題,解題的關(guān)鍵是掌握等腰三角形三線合一的性質(zhì)、直角三角形和平行四邊形的性質(zhì)及全等三角形與相似三角形的判定與性質(zhì)等知識(shí)點(diǎn).24、(1);(2)(9﹣t);(3)①S=﹣t2+t﹣;②S=﹣t2+1.③S=(9﹣t)2;(3)3或或4或.【解析】

(1)根據(jù)題意點(diǎn)R與點(diǎn)B重合時(shí)t+t=3,即可求出t的值;(2)根據(jù)題意運(yùn)用t表示出PQ即可;(3)當(dāng)點(diǎn)R落在□ABCD的外部時(shí)可得出t的取值范圍,再根據(jù)等量關(guān)系列出函數(shù)關(guān)系式;(3)根據(jù)等腰三角形的性質(zhì)即可得出結(jié)論.【詳解】解:(1)∵將線段PQ繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,得到線段PR,∴PQ=PR,∠QPR=90°,∴△QPR為等腰直角三角形.當(dāng)運(yùn)動(dòng)時(shí)間為t秒時(shí),AP=t,PQ=PQ=AP?tanA=t.∵點(diǎn)R與點(diǎn)B重合,∴AP+PR=t+t=AB=3,解得:t=.(2)當(dāng)點(diǎn)P在BC邊上時(shí),3≤t≤9,CP=9﹣t,∵tanA=,∴tanC=,sinC=,∴PQ=CP?sinC=(9﹣t).(3)①如圖1中,當(dāng)<t≤3時(shí),重疊部分是四邊形PQKB.作KM⊥AR于M.∵△KBR∽△QAR,∴=,∴=,∴KM=(t﹣3)=t﹣,∴S=S△PQR﹣S△KBR=×(t)2﹣×(t﹣3)(t﹣)=﹣t2+t﹣.②如圖2中,當(dāng)3<t≤3時(shí),重疊部分是四邊形PQKB.S=S△PQR﹣S△KBR=×3×3﹣×t×t=﹣t2+1.③如圖3中,當(dāng)3<t<9時(shí),重疊部分是△PQK.S=?S△PQC=××(9﹣t)?(9﹣t)=(9﹣t)2.(3)如圖3中,①當(dāng)DC=DP1=3時(shí),易知AP1=3,t=3.②當(dāng)DC=DP2時(shí),CP2=2?CD?,∴BP2=,∴t=3+.③當(dāng)CD=CP3時(shí),t=4.④當(dāng)CP3=DP3時(shí),CP3=2÷,∴t=9﹣=.綜上所述,滿足條件的t的值為3或或4或.【點(diǎn)睛】本題考查四邊形綜合題、動(dòng)點(diǎn)問題、平行四邊形的性質(zhì)、多邊形的面積、等腰三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類討論的思想解決問題,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問題,屬于中考?jí)狠S題.25、(1)P=t+2;(2)①當(dāng)0<t≤8時(shí),w=240;當(dāng)8<t≤12時(shí),w=2t2+12t+16;當(dāng)12<t≤24時(shí),w=﹣t2+42t+88;②此范圍所對(duì)應(yīng)的月銷售量P的最小值為12噸,最大值為19噸.【解析】分析:(1)設(shè)8<t≤24時(shí),P=kt+b,將A(8,10)、B(24,26)代入求解可得P=t+2;(2)①分0<t≤8、8<t≤12和12<t≤24三種情況,根據(jù)月毛利潤=月銷量×每噸的毛利潤可得函數(shù)解析式;②求出8<t≤12和12<t≤24時(shí),月毛利潤w在滿足336≤w≤513條件下t的取值范圍,再根據(jù)一次函數(shù)的性質(zhì)可得P的最大值與最小值,二者綜合可得答案.詳解:(1)設(shè)8<t≤24時(shí),P=kt+b,將A(8,10)、B(24,26)代入,得:,解得:,∴P=t+2;(2)①當(dāng)0<t≤8時(shí),w=(2t+8)×=240;當(dāng)8<t≤12時(shí),w=(2t+8)(t+2)=2t2+12t+16;當(dāng)12<t≤24時(shí),w=(-t+44)(t+2)=-t2+42t+88;②當(dāng)8<t≤12時(shí),w=2t2+12t+1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論