




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
4.1切線方程(精講)(提升版)思維導圖思維導圖考點呈現(xiàn)考點呈現(xiàn)例題剖析例題剖析考點一斜率和傾斜角【例1-1】(2022·江蘇淮安)已知函數(shù)SKIPIF1<0在SKIPIF1<0處的切線斜率為SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由題意得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,故選:D【例1-2】(2022·重慶一中)已知偶函數(shù)SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0的圖象在點SKIPIF1<0處的切線的斜率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】SKIPIF1<0當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0為偶函數(shù),SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.故選:A.【一隅三反】1.(2022·遼寧)已知曲線SKIPIF1<0在點SKIPIF1<0處的切線與直線SKIPIF1<0垂直,則實數(shù)a的值為______.【答案】SKIPIF1<0【解析】由題得SKIPIF1<0,所以SKIPIF1<0,所以曲線SKIPIF1<0在點SKIPIF1<0處的切線斜率為3,又曲線在點SKIPIF1<0處的切線與直線SKIPIF1<0垂直,所以SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.2.(2022·湖南·長沙縣第一中學模擬預測)函數(shù)SKIPIF1<0的圖象在SKIPIF1<0處的切線對應的傾斜角為SKIPIF1<0,則sin2SKIPIF1<0=(
)A.SKIPIF1<0 B.±SKIPIF1<0 C.SKIPIF1<0 D.±SKIPIF1<0【答案】C【解析】因為SKIPIF1<0所以SKIPIF1<0當SKIPIF1<0時,SKIPIF1<0,此時SKIPIF1<0,∴SKIPIF1<0.故選:C.3.(2022·湖南)已知P是曲線SKIPIF1<0上的一動點,曲線C在P點處的切線的傾斜角為SKIPIF1<0,若SKIPIF1<0,則實數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】因為SKIPIF1<0,所以SKIPIF1<0,因為曲線在M處的切線的傾斜角SKIPIF1<0,所以SKIPIF1<0對于任意的SKIPIF1<0恒成立,即SKIPIF1<0對任意SKIPIF1<0恒成立,即SKIPIF1<0,又SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時,等號成立,故SKIPIF1<0,所以a的取值范圍是SKIPIF1<0.故選:D.考點二“在型”的切線方程【例2-1】(2022·廣西)曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】∵SKIPIF1<0∴SKIPIF1<0,所以SKIPIF1<0,又當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在點SKIPIF1<0處的切線方程為:SKIPIF1<0,即SKIPIF1<0.故選:A.【例2-2】(2022·廣西·貴港市)已知曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0,則(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】C【解析】SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.將SKIPIF1<0代入SKIPIF1<0得SKIPIF1<0,∴SKIPIF1<0.故選:C.【一隅三反】1.(2022·河南)已知函數(shù)SKIPIF1<0的圖象經(jīng)過坐標原點,則曲線SKIPIF1<0在點SKIPIF1<0處的切線方程是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】因為函數(shù)SKIPIF1<0的圖象經(jīng)過坐標原點,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0.所以所求切線方程為SKIPIF1<0,即SKIPIF1<0.故選:A.2.(2022·安徽)已知SKIPIF1<0為奇函數(shù),且當SKIPIF1<0時SKIPIF1<0,則曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,故切線方程為SKIPIF1<0,即SKIPIF1<0.故選:A3.(2022·安徽·巢湖市)曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.1【答案】A【解析】由切點SKIPIF1<0在曲線上,得SKIPIF1<0①;由切點SKIPIF1<0在切線上,得SKIPIF1<0②;對曲線求導得SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0③,聯(lián)立①②③SKIPIF1<0,解之得SKIPIF1<0故選:A.4.(2022·湖北·武漢二中模擬預測)已知函數(shù)SKIPIF1<0,直線SKIPIF1<0是曲線SKIPIF1<0的一條切線,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】設(shè)切點為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0曲線SKIPIF1<0在切點SKIPIF1<0處的切線方程為SKIPIF1<0,整理得SKIPIF1<0,所以SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增.故SKIPIF1<0,則SKIPIF1<0的取值范圍是SKIPIF1<0.故選:C.考點三“過型”的切線方程【例3】(2022·河南洛陽)已知函數(shù)SKIPIF1<0,則曲線SKIPIF1<0過坐標原點的切線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】設(shè)切點為SKIPIF1<0,SKIPIF1<0,則切線斜率為SKIPIF1<0,所以,所求切線方程為SKIPIF1<0,將原點坐標代入所求切線方程可得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,因此,所求切線方程為SKIPIF1<0.故選:C.【一隅三反】1.(2022·廣東·新會陳經(jīng)綸中學)(多選)已知曲線SKIPIF1<0.則曲線過點P(1,3)的切線方程為.(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AB【解析】設(shè)切點為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以切線方程為SKIPIF1<0,因為切線過點(1,3),所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以切線方程為SKIPIF1<0或SKIPIF1<0,故選:AB2(2022·北京·匯文中學)SKIPIF1<0過點SKIPIF1<0的切線方程是__________.【答案】SKIPIF1<0或SKIPIF1<0【解析】由題,設(shè)切點為SKIPIF1<0,SKIPIF1<0,所以,切線方程為:SKIPIF1<0因為點SKIPIF1<0在切線上,所以,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.所以,當SKIPIF1<0時,切線方程為:SKIPIF1<0;當SKIPIF1<0時,切線方程為:SKIPIF1<0;綜上,所求切線方程為:SKIPIF1<0或SKIPIF1<0故答案為:SKIPIF1<0或SKIPIF1<03.(2022·四川·廣安二中)函數(shù)SKIPIF1<0過點SKIPIF1<0的切線方程為【答案】SKIPIF1<0或SKIPIF1<0【解析】由題設(shè)SKIPIF1<0,若切點為SKIPIF1<0,則SKIPIF1<0,所以切線方程為SKIPIF1<0,又切線過SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,當SKIPIF1<0時,切線為SKIPIF1<0;當SKIPIF1<0時,切線為SKIPIF1<0,整理得SKIPIF1<0.故選:C考點四切線或切點數(shù)量問題【例4-1】(2022·河南洛陽)若過點SKIPIF1<0作曲線SKIPIF1<0的切線,則這樣的切線共有(
)A.0條 B.1條 C.2條 D.3條【答案】C【解析】設(shè)切點為SKIPIF1<0,由SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以切線方程為SKIPIF1<0,即SKIPIF1<0,因為切線過點SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以過點SKIPIF1<0作曲線SKIPIF1<0的切線可以作2條,故選:C【例4-2】(2022·全國·高三專題練習)若過點SKIPIF1<0可以作曲線SKIPIF1<0的兩條切線,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】設(shè)切點坐標為SKIPIF1<0,由于SKIPIF1<0,因此切線方程為SKIPIF1<0,又切線過點SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,函數(shù)定義域是SKIPIF1<0,則直線SKIPIF1<0與曲線SKIPIF1<0有兩個不同的交點,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0恒成立,SKIPIF1<0在定義域內(nèi)單調(diào)遞增,不合題意;當SKIPIF1<0時,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,結(jié)合圖像知SKIPIF1<0,即SKIPIF1<0.故選:D.【一隅三反】1.(2022·河南洛陽)若過點SKIPIF1<0作曲線SKIPIF1<0的切線,則這樣的切線共有(
)A.0條 B.1條 C.2條 D.3條【答案】C【解析】設(shè)切點為SKIPIF1<0,由SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以切線方程為SKIPIF1<0,即SKIPIF1<0,因為切線過點SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以過點SKIPIF1<0作曲線SKIPIF1<0的切線可以作2條,故選:C2.(2022·湖北·宜城市第一中學)若過點SKIPIF1<0可以作曲線SKIPIF1<0的兩條切線,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0且SKIPIF1<0【答案】D【解析】作出SKIPIF1<0的圖象,由圖可知,若過點SKIPIF1<0可以作曲線SKIPIF1<0的兩條切線,點SKIPIF1<0應在曲線外,設(shè)切點為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以切線斜率為SKIPIF1<0,整理得SKIPIF1<0,即方程在SKIPIF1<0上有兩個不同的解,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0且SKIPIF1<0.故選:D.3.(2022·河南洛陽)若過點SKIPIF1<0可作出曲線SKIPIF1<0的三條切線,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由已知,曲線SKIPIF1<0,即令SKIPIF1<0,則SKIPIF1<0,設(shè)切點為SKIPIF1<0,切線方程的斜率為SKIPIF1<0,所以切線方程為:SKIPIF1<0,將點SKIPIF1<0代入方程得:SKIPIF1<0,整理得SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0,過點SKIPIF1<0可作出曲線SKIPIF1<0的三條切線,可知兩個函數(shù)圖像SKIPIF1<0與SKIPIF1<0有三個不同的交點,又因為SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以函數(shù)SKIPIF1<0的極大值為SKIPIF1<0,函數(shù)SKIPIF1<0的極小值為SKIPIF1<0,如圖所示,當SKIPIF1<0時,兩個函數(shù)圖像有三個不同的交點.故選:C.4.(2022·全國·高考真題)若曲線SKIPIF1<0有兩條過坐標原點的切線,則a的取值范圍是________________.【答案】SKIPIF1<0【解析】∵SKIPIF1<0,∴SKIPIF1<0,設(shè)切點為SKIPIF1<0,則SKIPIF1<0,切線斜率SKIPIF1<0,切線方程為:SKIPIF1<0,∵切線過原點,∴SKIPIF1<0,整理得:SKIPIF1<0,∵切線有兩條,∴SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,∴SKIPIF1<0的取值范圍是SKIPIF1<0,故答案為:SKIPIF1<0考點五公切線【例5-1】(2022·安徽省舒城中學)已知直線l是曲線SKIPIF1<0與SKIPIF1<0的公共切線,則l的方程為_____.【答案】SKIPIF1<0或SKIPIF1<0【解析】設(shè)SKIPIF1<0與曲線SKIPIF1<0相切于點SKIPIF1<0,與曲線SKIPIF1<0相切于點SKIPIF1<01),則SKIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0的方程為SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0的方程為SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0.【例5-2】(2022·江蘇·南京外國語學校模擬預測)若兩曲線y=x2-1與y=alnx-1存在公切線,則正實數(shù)a的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】設(shè)SKIPIF1<0切線:SKIPIF1<0,即SKIPIF1<0切線:SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0令SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0故選:A.【一隅三反】1.(2022·全國·模擬預測)若直線SKIPIF1<0與曲線SKIPIF1<0和SKIPIF1<0都相切,則SKIPIF1<0的斜率為______.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0的切點為SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,則切線方程為:SKIPIF1<0,即SKIPIF1<0圓心到圓的距離為SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0(舍去)所以SKIPIF1<0,則SKIPIF1<0的斜率為SKIPIF1<0故答案為:SKIPIF1<02.(2022·河北保定·二模)(多選)若直線SKIPIF1<0是曲線SKIPIF1<0與曲線SKIPIF1<0的公切線,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【解析】設(shè)直線SKIPIF1<0與曲線SKIPIF1<0相切于點SKIPIF1<0,與曲線SKIPIF1<0相切于點SKIPIF1<0,對于函數(shù)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.對于函數(shù)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.故選:AD3.(2022·安徽·合肥一六八中學)若直線SKIPIF1<0是曲線SKIPIF1<0的切線,也是曲線SKIPIF1<0的切線,則SKIPIF1<0__________.【答案】1或SKIPIF1<0【解析】設(shè)SKIPIF1<0與SKIPIF1<0和SKIPIF1<0的切點分別為SKIPIF1<0;由導數(shù)的幾何意義可得SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0∴SKIPIF1<0或SKIPIF1<0.故答案為:1或SKIPIF1<0.考點六切線與其他知識的運用【例6-1】(2022·湖北·黃岡中學)已知a,b為正實數(shù),直線SKIPIF1<0與曲線SKIPIF1<0相切,則SKIPIF1<0的最小值為(
)A.8 B.9 C.10 D.13【答案】B【解析】設(shè)切點為SKIPIF1<0,SKIPIF1<0的導數(shù)為SKIPIF1<0,由切線的方程SKIPIF1<0可得切線的斜率為1,令SKIPIF1<0,則SKIPIF1<0,故切點為SKIPIF1<0,代入SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0、SKIPIF1<0為正實數(shù),則SKIPIF1<0,當且僅當SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0取得最小值9,故選:B【例6-2】(2022·廣東·深圳市光明區(qū)高級中學)已知函數(shù)SKIPIF1<0,則曲線SKIPIF1<0在點SKIPIF1<0處的切線SKIPIF1<0恒過定點_____________.【答案】SKIPIF1<0【解析】函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0.又SKIPIF1<0,則曲線SKIPIF1<0在點SKIPIF1<0處的切線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,所以直線SKIPIF1<0恒過定點SKIPIF1<0.故答案為:SKIPIF1<0.【一隅三反】1.(2022·河北衡水)已知函數(shù)SKIPIF1<0在SKIPIF1<0處的切線為l,第一象限內(nèi)的點SKIPIF1<0在切線l上,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由點斜式直線方程得:切線l的方程為SKIPIF1<0,SKIPIF1<0,由于點P在直線l上,則SKIPIF1<0且SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時取等號;2.(2022·安徽)對于三次函數(shù)SKIPIF1<0,若曲線SKIPIF1<0在點SKIPIF1<0處的切線與曲線SKIPIF1<0在點SKIPIF1<0處點的切線重合,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】設(shè)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0……①又SKIPIF1<0,即SKIPIF1<0……②由①②可得SKIPIF1<0,SKIPIF1<0.故選:B.3.(2022·黑龍江·哈爾濱三中)若曲線SKIPIF1<0過點SKIPIF1<0的切線恒在函數(shù)SKIPIF1<0的圖象的上方,則實數(shù)a的取值范圍是__________.【答案】SKIPIF1<0【解析】設(shè)曲線SKIPIF1<0過點SKIPIF1<0的切線的切點為SKIPIF1<0,則切線的斜率SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,切線方程為SKIPIF1<0,所以SKIPIF1<0恒成立,所以SKIPIF1<0恒成立,令SKIPIF1<0,則SKIPIF1<0因為當SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0為SKIPIF1<0的極小值點,又因為SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.考點七切線方程的運用【例7-1】(2022·全國·高三專題練習)設(shè)點P在曲線SKIPIF1<0上,點Q在曲線SKIPIF1<0上,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0的最小值為SKIPIF1<0到SKIPIF1<0的距離,SKIPIF1<0.故選:B.【例7-2】(2022·山東煙臺·三模)已知函數(shù)SKIPIF1<0,若方程SKIPIF1<0有且僅有三個實數(shù)解,則實數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】作出函數(shù)SKIPIF1<0的圖象如圖:依題意方程SKIPIF1<0有且僅有三個實數(shù)解,即SKIPIF1<0與SKIPIF1<0有且僅有三個交點,因為SKIPIF1<0必過SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0時,方程SKIPIF1<0不可能有三個實數(shù)解,則必有SKIPIF1<0,當直線SKIPIF1<0與SKIPIF1<0在SKIPIF1<0時相切時,設(shè)切點坐標為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,則切線方程為SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0切線方程為SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即當SKIPIF1<0時SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上有且僅有一個交點,要使方程SKIPIF1<0有且僅有三個的實數(shù)解,則當SKIPIF1<0時SKIPIF1<0與SKIPIF1<0有兩個交點,設(shè)直線SKIPIF1<0與SKIPIF1<0切于點SKIPIF1<0,此時SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故選:B【一隅三反】1.(2022·江蘇徐州)過平面內(nèi)一點P作曲線SKIPIF1<0的兩條互相垂直的切線SKIPIF1<0,切點分別為SKIPIF1<0(SKIPIF1<0不重合),設(shè)直線SKIPIF1<0分別與y軸交于點A,B,則SKIPIF1<0面積的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】設(shè)SKIPIF1<0當SKIPIF1<0時,SKIPIF1<0故切線為:SKIPIF1<0,即SKIPIF1<0當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,故切線為:SKIPIF1<0,即SKIPIF1<0兩切線垂直,則SKIPIF1<0,則SKIPIF1<0所以,SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0∴SKIPIF1<0.故選:B.2.(2022·全國·高三專題練習)已知函數(shù)SKIPIF1<0有兩個零點,則實數(shù)a的取值范圍是______.【答案】SKIPIF1<0【解析】SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,顯然該函數(shù)單調(diào)遞增,即SKIPIF1<0有兩個根,即SKIPIF1<0有兩個根,如下圖,作出函數(shù)SKIPIF1<0的圖像及其過原點的切線SKIPIF1<0,可知當SKIPIF1<0時有兩個交點即SKIPIF1<0有兩個根.故答案為:SKIPIF1<0.3.(2022·云南曲靖·二模)設(shè)SKIPIF1<0是函數(shù)SKIPIF1<0的導函數(shù),SKIPIF1<0是函數(shù)SKIPIF1<0的導函數(shù),若對任意SKIPIF1<0恒成立,則下列選項正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】因為對任意SKIPIF1<0,SKIPIF1<0,SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,即SKIPIF1<0的圖象增長得越來越慢,從圖象上來看函數(shù)是上凸遞增的,所以SKIPIF1<0,又SKIPIF1<0,表示點SKIPIF1<0與點SKIPIF1<0的連線的斜率,由圖可知SKIPIF1<0即SKIPIF1<0,故選:A4.(2022·江西·新余市)若點SKIPIF1<0在曲線SKIPIF1<0上運動,點SKIPIF1<0在直線SKIPIF1<0上運動,SKIPIF1<0兩點距離的最小值為_______【答案】SKIPIF1<0【解析】設(shè)與直線SKIPIF1<0平行且與曲線SKIPIF1<0相切于點SKIPIF1<0時,此時SKIPIF1<0兩點距離的最小值為點SKIPIF1<0到直線SKIPIF1<0的距離,因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0即得SKIPIF1<0,SKIPIF1<0,所以點SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,所以SKIPIF1<0兩點距離的最小值為SKIPIF1<0.故答案為:SKIPIF1<04.1切線方程(精練)(提升版)題組一題組一斜率與傾斜角1.(2022·河南·南陽中學)設(shè)函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.2【答案】A【解析】因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故選:A2.(2022·山東)(多選)設(shè)點P是曲線SKIPIF1<0上的任意一點,P點處的切線的傾斜角為SKIPIF1<0,則角SKIPIF1<0的取值范圍包含(
)A.SKIPIF1<0
B.SKIPIF1<0
C.SKIPIF1<0
D.SKIPIF1<0【答案】CD【解析】SKIPIF1<0,SKIPIF1<0,依題意:SKIPIF1<0,SKIPIF1<0,∵傾斜角SKIPIF1<0的取值范圍是SKIPIF1<0,∴SKIPIF1<0,故選:CD.3.(2022·河南·鄭州市第二高級中學)設(shè)點SKIPIF1<0是函數(shù)SKIPIF1<0圖象上的任意一點,點SKIPIF1<0處切線的傾斜角為SKIPIF1<0,則角SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0點P是曲線上的任意一點,點P處切線的傾斜角為SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0.故選:B.4.(2022·全國·高三專題練習)已知SKIPIF1<0,則曲線SKIPIF1<0在點SKIPIF1<0處的切線的斜率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】對SKIPIF1<0,求導可得,SKIPIF1<0,得到SKIPIF1<0,所以,SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0故選D5.(2022·廣東·佛山一中)已知點SKIPIF1<0是曲線SKIPIF1<0上一動點,當曲線在SKIPIF1<0處的切線斜率取得最小值時,該切線的傾斜角為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】根據(jù)題意得,SKIPIF1<0,所以SKIPIF1<0,當且僅當SKIPIF1<0時成立,所以該切線的傾斜角為:SKIPIF1<0.故選:D.6.(2022·全國·高三專題練習)已知函數(shù)SKIPIF1<0是定義在R上的奇函數(shù),且SKIPIF1<0,則函數(shù)SKIPIF1<0的圖象在點SKIPIF1<0處的切線的斜率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】SKIPIF1<0是奇函數(shù),SKIPIF1<0恒成立,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0.故選:A.7.(2022·重慶市朝陽中學)(多選)如圖,SKIPIF1<0是可導函數(shù),直線l:SKIPIF1<0是曲線SKIPIF1<0在SKIPIF1<0處的切線,令SKIPIF1<0,其中SKIPIF1<0是SKIPIF1<0的導函數(shù),則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【解析】由圖可知,f(3)=1,故A正確;(3,1)在y=kx+2上,故1=3k+2,故SKIPIF1<0,故B錯誤;SKIPIF1<0,則SKIPIF1<0,故C正確;SKIPIF1<0,SKIPIF1<0,故D正確.故選:ACD.題組二題組二“在型”的切線方程1.(2022·河南省??h第一中學)曲線SKIPIF1<0在SKIPIF1<0處的切線方程為(
)A.4x-y+8=0 B.4x+y+8=0C.3x-y+6=0 D.3x+y+6=0【答案】B【解析】因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.又當SKIPIF1<0時,SKIPIF1<0,故切點坐標為SKIPIF1<0,所以切線方程為SKIPIF1<0.故選:B.2.(2022·河南)已知SKIPIF1<0,則曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴y=f(x)在SKIPIF1<0處的切線方程為:SKIPIF1<0,即SKIPIF1<0.故選:A.3.(2022·山東棗莊·三模)曲線SKIPIF1<0在點SKIPIF1<0處的切線與直線SKIPIF1<0垂直,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】設(shè)SKIPIF1<0,則SKIPIF1<0,直線SKIPIF1<0的斜率為SKIPIF1<0,由題意可得SKIPIF1<0,解得SKIPIF1<0.故選:C.4.(2022·江蘇蘇州·模擬預測)已知奇函數(shù)SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0或1 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0或2 D.SKIPIF1<0或SKIPIF1<0【答案】D【解析】由SKIPIF1<0可得SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.所以SKIPIF1<0,故切線斜率SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.故選:D5.(2022·安徽·蚌埠二中)已知定義域為SKIPIF1<0的函數(shù)SKIPIF1<0存在導函數(shù)SKIPIF1<0,且滿足SKIPIF1<0,則曲線SKIPIF1<0在點SKIPIF1<0處的切線方程可能是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】SKIPIF1<0的定義域為SKIPIF1<0,由SKIPIF1<0可知,SKIPIF1<0是偶函數(shù),由SKIPIF1<0可知,SKIPIF1<0周期為4,因為SKIPIF1<0,故SKIPIF1<0關(guān)于SKIPIF1<0軸對稱,又因為SKIPIF1<0,所以SKIPIF1<0也是SKIPIF1<0的對稱軸,因為SKIPIF1<0在SKIPIF1<0上存在導函數(shù)SKIPIF1<0,所以SKIPIF1<0是SKIPIF1<0的極值點,即SKIPIF1<0,曲線SKIPIF1<0在點SKIPIF1<0處的切線斜率為0,故切線方程可能為SKIPIF1<0.故選:B.6.(2022·河南·南陽中學)若直線SKIPIF1<0與曲線SKIPIF1<0相切,直線SKIPIF1<0與曲線SKIPIF1<0相切,則SKIPIF1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T-ZJWL 001-2024 大宗商品供應鏈金融動產(chǎn)質(zhì)押監(jiān)管倉儲服務規(guī)范
- T-ZNZ 264.3-2024 重金屬中度污染農(nóng)田土壤修復和安全利用技術(shù)規(guī)范 第3部分:超積累東南景天與芝麻輪作
- 二零二五年度服裝品牌廠家全國代理合作協(xié)議
- 2025年度電影院包場租賃及廣告合作合同
- 二零二五年度金融科技股權(quán)投資合同協(xié)議
- 二零二五年度工傷事故賠償調(diào)解協(xié)議(含傷殘評定)
- 二零二五年度全包裝修合同模板含定制家具制作
- 2025年度離職賠償協(xié)議書中的離職員工離職通知及手續(xù)辦理
- 二零二五年度聯(lián)防聯(lián)控疫情防控科研合作合同
- 2025年度線上虛擬購物體驗合同書
- Unit5 What day is it today?(教學設(shè)計)-2023-2024學年教科版(廣州)英語四年級下冊
- 《網(wǎng)絡(luò)信息安全教學》課件
- 《住院患者身體約束的護理》團體標準解讀課件
- 2024年黑龍江建筑職業(yè)技術(shù)學院單招職業(yè)適應性測試題庫全面
- MOOC 跨文化交際通識通論-揚州大學 中國大學慕課答案
- 10000中國普通人名大全
- 教師聽課評分表
- 項目章程模板范文
- 泰山產(chǎn)業(yè)領(lǐng)軍人才工程系統(tǒng)
- 輪扣架支模體系材料量計算
- 主題班會教案《讀書好讀好書好讀書》班會方案
評論
0/150
提交評論