版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PAGEPAGE1數(shù)列大題訓(xùn)練一、解答題1.設(shè)數(shù)列{????}的前??項(xiàng)和為????.已知??2=4,????+1=2????+1,??∈N?.(1)求通項(xiàng)公式????;(2)求數(shù)列{|????????2|}的前??項(xiàng)和.2.已知??,??,??,???,??
為正整數(shù)且??
>??
>??
>???>??
>1,將等式(1?1)+(1?1)+(1?1)+??01 2 ??
0 1 2 ??
??1
??2
??3?+(1?1)=2(1?1)記為(?)式.???? ??0(1)??(??)=1?1
,??∈[2,+∞)的值域;(2)試判斷當(dāng)??=1時(shí)(或2時(shí)),是否存在??0,??1(或??0,??1,??2)使(?)式成立,若存在,寫(xiě)出對(duì)應(yīng)??0,??1(或??0,??1,??2),若不存在,說(shuō)明理由;(3)求所有能使(?)式成立的????(0≤??≤??)所組成的有序?qū)崝?shù)對(duì)(??0,??1,??2,???,????).3.已知函數(shù)??(??)=log3(??+1)(??>0)的圖象上有一點(diǎn)列??(??
,??)(??∈???),點(diǎn)??
在??軸上的射影是??+1
?? ???? ??????(????,0),且????=3?????1+2(??≥2且??∈???),??1=2.(1)求證:{????+1}是等比數(shù)列,并求出數(shù)列{????}的通項(xiàng)公式;2 1(2)對(duì)任意的正整數(shù)??,當(dāng)??∈[?1,1]時(shí),不等式3???6????+>????恒成立,求實(shí)數(shù)??的取值范3圍.(3)四形?????? ??
1 1的積是?? ,證: +
+?+1
<3.??????+1??+1
??
??????4.已知n為正整數(shù),數(shù)列{a}滿(mǎn)足a>0,4(??+1)??
2?????
2=0,設(shè)數(shù)列滿(mǎn)足??
=????2n n ??
??+1
n ??
????{??}??{??}(1)證數(shù)列 等數(shù)列;√(2)若數(shù)列{bn}是等差數(shù)列,求實(shí)數(shù)t的值;1(3)數(shù){bn}是差列前n和為Sn ,任的n∈N* ,存在m∈N* ,使得8a2Sn﹣11a4n2=16bm成立,求滿(mǎn)足條件的所有整數(shù)a1的值.1?? 2 ??5.已知數(shù)列{????}和{????}滿(mǎn)足:??1=??,數(shù),??為正整數(shù).
??+1=3????+???4,????=(?1)
(?????3??+21)其中??為實(shí)(1)對(duì)任意實(shí)數(shù)??,證明數(shù)列{????}不是等比數(shù)列;(2)對(duì)于給定的實(shí)數(shù)??,試求數(shù)列{????}的前??項(xiàng)和????;0<??<????????<<????的6.已知數(shù)列{????
}滿(mǎn)足??1
=1,????+1
=1?14????
,其中??∈???.(1)設(shè)????
= 2
,求證:數(shù)列{????
}是等差數(shù)列,并求出[????
}的通項(xiàng)公式;設(shè)
=4??????+1
????+2
}n
<1
對(duì)于??∈???恒成立,求m的最小值.7.設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列{????}中,??1+??3=10,??3+??5=40,數(shù)列{????}的前??和????=??2+7??.2(1)求數(shù)列{????}、{????}的通項(xiàng)公式;(2)
=1,????+1
=
+?????3????
,求證:????
<3.111???????11
+ 1??2???2
+??????+ 1?????????
>??
對(duì)任意正整數(shù)??均成立?若存在,求出??+8.已知數(shù)列{??}的各項(xiàng)均為非零實(shí)數(shù),其前n項(xiàng)和為??+
,且????.??(1)若??3=3,求??3的值;
?? 1=????+2(2)若??2021=2021??1,求證:數(shù)列{????}是等差數(shù)列;(3)若??1=1,??2=2,是否存在實(shí)數(shù)??,使得|2?????2????|≤??|??2???2|對(duì)任意正整數(shù)??,??恒成立,若存在,求實(shí)數(shù)??的取值范圍,若不存在,說(shuō)明理由.??2???
?? ???? 9.知列{????}和{????},=1,??2=3,????+1=?? ???1?? ???1
,(??∈???且??≥2),????=1????2(????+1)2?5????+1(I)求??3,??4;
,(??∈???).(Ⅱ)猜想數(shù)列{????}的通項(xiàng)公式,并證明;Ⅲ( )??(??)=x+1Ⅲ??+2
,|??(????
)???|≤16
對(duì)任意??∈???恒成立,求??的取值范圍.210.已知數(shù)列{????}滿(mǎn)足:??1=?3,????+1=
?2?????3(??∈ ???).3????+4(1)證明:數(shù)列{1}是等差數(shù)列,并求{??
}的通項(xiàng)公式;????+1 ??3?數(shù)列{????}足:=2(????+1)(??∈ ??3?
對(duì)切??∈ ???
,都有(1???1)(1???2)...(1?
)≤ ??
成立,求實(shí)數(shù)??的最小值.11.{????}pn,總有(????+1???)(???????)<0{????}為“p-”.(Ⅰ)設(shè)????=2???1,????=(?由;
1??)2)
,??∈???
,判斷{????}、{????}是否為“p-擺動(dòng)數(shù)列”,并說(shuō)明理(Ⅱ)已知“p-擺動(dòng)數(shù)列”{????
}滿(mǎn)足????+1
=1????+1
,
=1,求常數(shù)p的值;(Ⅲ)設(shè)????=(?1)???(2???1),且數(shù)列{????}的前n項(xiàng)和為????,求證:數(shù)列{????}是“p-擺動(dòng)數(shù)列”,并求出常數(shù)p的取值范圍.12.等差數(shù)列{????}的前??項(xiàng)和為????.(1)求證:數(shù)列
????{??}
是等差數(shù)列;(2)若
=1,{√????
公為 的差數(shù),使????+1?????+2} 1????} 1
為整數(shù)的正整數(shù)??的取值集合;(3)??=??????(??0)??1+??2+?…+????≤1+??2.?? ?? 213.已知數(shù)列{????}的前??項(xiàng)和為????,且????=2?????2.(1)求{????}的通項(xiàng)公式;(2)在????與????+1之間插入??個(gè)數(shù),使這??+2個(gè)數(shù)組成一個(gè)公差為????的等差數(shù)列,在數(shù)列{????}中是否存在3項(xiàng)????,????,????(其中??,??,??成等差數(shù)列)成等比數(shù)列?若存在,求出這樣的3項(xiàng);若不存在,請(qǐng)說(shuō)明理由.14.已知遞增的等比數(shù)列{????}滿(mǎn)足??2+??3+??4=28,且??3+2是??2,??4的等差中項(xiàng).(1)求{????}的通項(xiàng)公式;2(2)若????=????log1????,????=??1+??2+??3+?+????求使????+???2??+1>30成立的??的最小值.215.{????}=1??2=??????+1=??(????+????+2)??∈???{????}的前??項(xiàng)和為????.(1)若{????}是等差數(shù)列,求??的值;(2)若??=1,??=?12
,求????;(3)是否存在實(shí)數(shù)??,使數(shù)列{????}是公比不為1的等比數(shù)列,且任意相鄰三項(xiàng)????,????+1,????+2按某順序排列后成等差數(shù)列?若存在,求出所有??的值;若不存在,請(qǐng)說(shuō)明理由.16.n11kak(k=1,2,…,n).(1)求數(shù)列{ak}的通項(xiàng)公式;(2)當(dāng)k為何值時(shí),ak的值最大,求出ak的最大值.17.已知等比數(shù)列{????}的公比??>1,??2,??3是方程??2?6??+8=0的兩根.(1)求數(shù)列{????}的通項(xiàng)公式;(2)求數(shù)列{2???????}的前??項(xiàng)和????.18.{????}????2=????+1?????1??(??2??1)2???2??∈????為常數(shù).(1)若{????}是等差數(shù)列,且公差??≠0,求??的值;(2)若??1=1,??2=2,??3=4,且存在??∈[3,7],使得???????≥?????對(duì)任意的??∈???都成立,求??的最小值;(3)??≠0{????}??????+??=??????∈???均成立.{????}??.19.已知等差數(shù)列{????}滿(mǎn)足??2=5,??4+??5=??3+13.設(shè)正項(xiàng)等比數(shù)列{????}的前??項(xiàng)和為????,且??2??4=81,S3=13.(1)求數(shù)列{????}、{????}的通項(xiàng)公式;(2)設(shè)????=????????,數(shù)列{????}的前??項(xiàng)和為????,求????.20.公差不為零的等差數(shù)列{????}中,??1,??2,??5成等比數(shù)列,且該數(shù)列的前10項(xiàng)和為100,數(shù)列
}的前n項(xiàng)和為????
,滿(mǎn)足=?1, ??∈???.(Ⅰ)求數(shù)列{????},{????}的通項(xiàng)公式;(Ⅱ)令????
=1+????4????
,數(shù)列{????
}n
,求
的取值范圍.21.已數(shù){an}前n和為Sn ,且Sn+an=4,n∈N*.(1)求數(shù)列{an}的通項(xiàng)公式;dn=cn+logCan(C>0{dn}C(3)若數(shù)列,對(duì)于任意的正整數(shù)n,均有ba+ba
+ba
1+…+ba=(1
)n﹣??+2
成立,求證:數(shù)n列{bn}是等差數(shù)列.
1n 2n﹣1
3n﹣2
n1 2 222.已知數(shù)列{????
}滿(mǎn)足??1
=1,????+1
=1?14????
,其中??∈???.(1)設(shè)????
= 2
,求證:數(shù)列{????
}是等差數(shù)列,并求出{????
}的通項(xiàng)公式;(2)設(shè)????
=4??????+1
,數(shù)列{????
????+2
}的前??項(xiàng)和為????.23.已數(shù){an}前n和為Sn ,且足12Sn﹣36=3n2+8n,數(shù){log3bn}等差列且b1=3,b3=27.(Ⅰ)求數(shù)列{an}與{bn}的通項(xiàng)公式;(Ⅱ)令c=(﹣1)n(???5)+?? ,求數(shù){c}前n項(xiàng)和T.n ?? 12 ?? n n24.已知q和n均為給定的大于1的自然數(shù),設(shè)集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn-1 ,xi∈M,i=1,2,…,n}.(1)當(dāng)q=2,n=3時(shí),用列舉法表示集合A.(2)設(shè)s,t∈A,s=a1+a2q+…+anqn-1 ,t=b1+b2q+…+bnqn-1 ,中ai ,bi∈M,i=1,2,…,n.證:若an<bn ,則s<t. ?25.已知數(shù)列{????}的首項(xiàng)??1=??(??>0),其前n項(xiàng)和為????,設(shè)????=????+????+1(??∈??).(1)若??2=??+1,??3=2??2,且數(shù)列{????}是公差為3的等差數(shù)列,求??2??;(2)設(shè)數(shù)列{????}的前??項(xiàng)和為????,滿(mǎn)足????=??2.①求數(shù)列{????}的通項(xiàng)公式;②若對(duì)???∈???,且??≥2,不等式(?????1?1)(????+1?1)≥2(1???)恒成立,求a的取值范圍.26.是否存在一個(gè)等比數(shù)列{a}同時(shí)滿(mǎn)足下列三個(gè)條件:①a+a=11且aa=
;②a
>a(n∈N*);n 1 6
34 9
n+1 n③至少存在一個(gè)m(m∈N*且m>4),使得2a
,a2 ,a
+4依次構(gòu)成等差數(shù)列?若存在,求出通項(xiàng)公式;若不存在,說(shuō)明理由.
3 m﹣1 m
m+1 927.設(shè){????}是等差數(shù)列,??1=?8,且??2+8,??3+6,??4+4成等比數(shù)列.(1)求{????}的通項(xiàng)公式;(2)求{????}的前??項(xiàng)和????的最小值;(3)若{????}是等差數(shù)列,{????}與{????}的公差不相等,且??5=??5,問(wèn):{????}和{????}中除第5項(xiàng)外,還有序號(hào)相同且數(shù)值相等的項(xiàng)嗎?(直接寫(xiě)出結(jié)論即可)28.已知數(shù)列{??
}滿(mǎn)足1??
≤??
≤3?? ,??∈???,??
=1.?? 3??
??+1 ?? 1(1)若??2=3,??3=??,??4=6,求??的取值范圍;(2)若{??}是公比為??的等比數(shù)列,??
=??+??
+?+??
,1??
≤??
≤3??,??∈???,求????的取值范圍;
?? 1 2
?? 3??
??+1(3)若??1,??2,?,????成等差數(shù)列,且??1+??2+?+????=2020,求正整數(shù)??的最大值.29.若數(shù)列{????}是公差為2的等差數(shù)列,數(shù)列{????}滿(mǎn)足b1=1,b2=2,且anbn+bn=nbn+1.(1)求數(shù)列{????},{????}的通項(xiàng)公式;(2)設(shè)數(shù)列{????
}滿(mǎn)足????
=????+1????+1
,數(shù)列{????
}n
,若不等式(-1)????<????
+??2???1對(duì)一切n∈N*恒成立,求實(shí)數(shù)λ的取值范圍.30.設(shè)????是數(shù)列{????}的前??項(xiàng)之積,且滿(mǎn)足????=3?????,??∈???.(1)求證:數(shù)列
{1
12?}是等比數(shù)列,并寫(xiě)出數(shù)列{????}的通項(xiàng)公式;2(2)設(shè)?? 數(shù)列{??
}是前??項(xiàng)之和,證明:??+1?1<??
<??+2?2.?? ??
??
????31.{an}an+1+an=4n﹣3,n∈N*(1){an}a1(2)a1=﹣3{an}nSn;(3)對(duì)意的n∈N* ,有????2+????+12????+????+1
≥5a1
的取值范圍.32.????????中,內(nèi)角??,??,??的對(duì)邊分別是??,??,??,已知??,??,??成等比數(shù)列,且
??=3.(Ⅰ)求 1tan??
+1tan??
的值;
cos 4Ⅱ( 設(shè)?=3Ⅱ2
,求??+??的值.33.已知數(shù)列{????}的前??和為????,且滿(mǎn)足??????=?????1,其中??≠0且??≠1.(1)證明:數(shù)列{????}是等比數(shù)列;(2)當(dāng)??=12
,令????
=(??+1)????
,數(shù)列{????
}的前??項(xiàng)和為????
,若需????>2019恒成立,求正整??數(shù)??的最小值.34.已知數(shù)列{????
}滿(mǎn)足??1
=1,????+1
=????1+??1+??2
,??∈???,記????
,
分別是數(shù)列{????
??},{??2}的??前??項(xiàng)和,證明:當(dāng)??∈???時(shí),(1)????+1<????;
=1??2??2
?2???1;(3)√2???1<????<√2??.35.設(shè)??為不等于1的正常數(shù),{????}各項(xiàng)均為正,首項(xiàng)為1,且{????}前??項(xiàng)和為????,已知對(duì)任意的正整數(shù)??,??,當(dāng)時(shí)??>??,?????????=????·???????恒成立.(1)求數(shù)列{????}的通項(xiàng)公式;(2)若數(shù)列{????}是首項(xiàng)為1,公差為3的等差數(shù)列,存在一列數(shù)??1,??2,?,????,?:恰好使得????1=??1,????2=??2,?,??????=????,?,且??1=1,??2=2,求數(shù)列{????}的通項(xiàng)公式;(3)當(dāng)??=3時(shí),設(shè)????
=??
,問(wèn)數(shù)列{????
}中是否存在不同的三項(xiàng)恰好成等差數(shù)列?若存在,求出所有這樣的三項(xiàng),若不存在,請(qǐng)說(shuō)明理由36.已知數(shù)列{??
}滿(mǎn)足
?? ??
?3(??≥2,且??∈???),且??
=?3
,設(shè)????+2=3log1(????+?? 4
??=
???1
1 4 41),??∈???,數(shù)列{????}滿(mǎn)足????=(????+1)????.(1)求證:數(shù)列{????+1}是等比數(shù)列并求出數(shù)列{????}的通項(xiàng)公式;(2)求數(shù)列{????}的前n項(xiàng)和????;(3)對(duì)于任意??∈???,??∈[0,1],????
?????2????12
恒成立,求實(shí)數(shù)m的取值范圍.37.已知{????}是遞增的等差數(shù)列,??2,??4是方程x2-5x+6=0的根.(1)求{????}的通項(xiàng)公式;??????(2)求數(shù)列{2??}的前??項(xiàng)和.38.已知數(shù)列{??
}的滿(mǎn)足??
=1,前??項(xiàng)的和為??
,且????+1?????= 2
(??∈??*).?? 1(1)求??2的值;
?? ????????+1
4?????1(2)設(shè)????
=???? ????+1?????
,證明:數(shù)列{????
}是等差數(shù)列;(3)設(shè)????=2?????????,若1≤??≤√2,求對(duì)所有的正整數(shù)??都有2??2?????+3√2<????成立的??的取值范圍.39.數(shù)列{????}??(??>0??≠1數(shù)列{????}=?????lg????.(1)求數(shù)列{????}的前??項(xiàng)和????;(2)若對(duì)一切??∈???都有????<????+1,求??的取值范圍.40.等數(shù){an}前n項(xiàng)為Sn ,且
=(????+1)22
數(shù)列{bn}中其前n和為T(mén)n ,且=)(????+12)
,(n∈N*)2(1)求an ,bn;(2)求{anbn}的前n項(xiàng)和Mn.41.??(??)=??????3(??????)??(2,1)??(5,2)????=3??(??)??∈??*.(1)求數(shù)列{????}的通項(xiàng)公式.(2)設(shè)????
=????2??
,
=
+
+?
,
<??(??∈??),求??的最小值.42.已知公比??>0的等比數(shù)列{????}的前??項(xiàng)和為????,且??1=1,??3=13,數(shù)列{????}中,??1=1,??3=3.(1)若數(shù)列{????+????}是等差數(shù)列,求????,????;(2)在(1)的條件下,求數(shù)列{????}的前??項(xiàng)和????.43.已知數(shù)列{bn}是首項(xiàng)b1=1,b4=10的等差數(shù)列,設(shè)bn+2=3log14
an(n∈n*).(1)求證:{an}是等比數(shù)列;(2)cn=
1
,求數(shù)列{cn}的前n項(xiàng)和Sn;記,若任正數(shù)等式的最大值.
1??+??1
1+??+??2
+…+
1??+????
??>24恒成立,求整數(shù)m44.已知各項(xiàng)均不相等的等差數(shù)列{????}的前五項(xiàng)和??5=20,且??1,??3,??7成等比數(shù)列;(1)求數(shù)列{????}的通項(xiàng)公式;(2)若
數(shù)列{ 1????????+1
}的前??項(xiàng)和,且存在??∈???,使得????
???????
≥0成立,求實(shí)數(shù)??的取值范圍。45.已知{????}為等差數(shù)列,{????}為等比數(shù)列,??1=??1=1,??5=5(??4???3),??5=4(??4???3).(1)求{????}和{????}的通項(xiàng)公式;??+1(2)記{????}前n和為Sn,證:????????+2<??2 (n∈N*);n??+1(3?????2)????,??為奇數(shù)(3)n,設(shè)={
????????+2?????1,??為偶數(shù)????+1
,求數(shù)列{????
}的前2n項(xiàng)和.46.{????}{????}??∈N?|?????????|≤??,{????}{????}??(??).(1)設(shè)無(wú)窮數(shù)列{????}和{????}均是等差數(shù)列,且????=2??,????=??+2(??∈N?),問(wèn):數(shù)列{????}與{????}是否具有關(guān)系??(1)?說(shuō)明理由;{????
}是首項(xiàng)為1,公比為131
=????+1
+1,??∈
N?,證明:數(shù)列{????}與{????}具有關(guān)系??(??),并求A的最小值;(3)設(shè)無(wú)窮數(shù)列{????}是首項(xiàng)為1,公差為??(??∈R)的等差數(shù)列,無(wú)窮數(shù)列{????}是首項(xiàng)為2,公比為??(??∈N?)的等比數(shù)列,試求數(shù)列{????}與{????}具有關(guān)系??(??)的充要條件.47.若正整數(shù)數(shù)列{????},{????}滿(mǎn)足:對(duì)任意??≥2,??∈N?,都有??1??1+??2??2+?+????????=?????1????+1+3恒成立,則稱(chēng)數(shù)列{????},{????}為“友好數(shù)列”.(1)已知數(shù)列{????},{????}的通項(xiàng)公式分別為????=2???1,????=2???1,求證:數(shù)列{????},{????}為“友好數(shù)列”;(2)已知數(shù)列{????},{????}為“友好數(shù)列”,且??1=??1=1,求證:“數(shù)列{????}是等差數(shù)列”是“數(shù)列{????}是等比數(shù)列”的充分不必要條件.48.已知以??1為首項(xiàng)的數(shù)列{????}滿(mǎn)足:|????+1|=|????+1|(??∈???).(1)當(dāng)??1
=?13
時(shí),且?1<????
<0,寫(xiě)出??2
、??3;(2)若數(shù)列{|????|}(1≤??≤10,??∈???)是公差為?1的等差數(shù)列,求??1的取值范圍;(3)記????為{????}的前??項(xiàng)和,當(dāng)??1=0時(shí),給定常數(shù)??(??≥4,??∈???),求?????1的最小值.49.定義首項(xiàng)為1且公比為正數(shù)的等比數(shù)列為“M-數(shù)列”.(1)已知等比數(shù)列{an}滿(mǎn)足:??2??4=??5,??3?4??2+4??1=0,求證:數(shù)列{an}為“M-數(shù)列”;1 2 2(2)知列足:??=1, = ?
,其中S為數(shù)列的前n項(xiàng)和.n 1
????+1 n n①求數(shù)列{bn}的通項(xiàng)公式;②設(shè)m為整,存“M-數(shù)列”{cn},對(duì)意整數(shù)k ,當(dāng)k≤m,有??????+1成立,求m最大.50.已知數(shù)列{????}是首項(xiàng)為2的等比數(shù)列,若??1,??2+1,??3成等差數(shù)列.(1)求{????}的通項(xiàng)公式;(2)數(shù)列{????}足=log2????,求??2???2+??2???2+??2???2+???+??2???2 的值.1 2
4 5 6
99 答案解析部分一、解答題1.【答案】(1)解:由題意得{??1+??2=4??2=2??1+1
,則{??1=1??2=3??≥2????+1?????=(+1)2?????1+1)=2????,得????+1=3????.所以,數(shù)列{????}的通項(xiàng)公式為????=3???1,??∈???(2)=|3???1????2|,??∈???,2,1.??≥33???1>??+2=3???1????2,??≥3.{????}??2,=3.當(dāng)??≥3??
=3+9(1?3???2)?(??+7)(???2)=3?????2?5??+11,?? 1?3 2 22,??=1,所以,????={3?????2?5??+11,??≥2,??∈???.22.【答案】(1)解:設(shè)2≤??
<??
,??(??)=1?1
,??(??)=1?1
,??(??)???(??)=1?1=??2???1>0??1??2
1 2 2
??2
1 ??1
2 1 ??1
??21故??(??)=1?1在??∈[2,+∞)上單,??(??) =??(2)=1?1=1當(dāng)??→+∞時(shí),??(??)=1?→1?? min 2 2 ??1,則??(??)∈[12
,1)??(??
)=1?1
1<??
<??
<??
時(shí),(1?1)<(1?1)<??
2 1 0
??2
??1(1?1),當(dāng)??=1時(shí),1?1<1?1
,所以(?)式不成立;??0
??1
??0當(dāng)??=2時(shí),(1?1)<(1?1)<(1?1),(1?1)+(1?1)<2(1?1),(?)式也不成立,故??2
??1
??0
??2
??1
??0當(dāng)??=1時(shí)(或2時(shí)),不存在??0,??1(或??0,??1,??2)使(?)式成立??(??
)=1?1 1
?? 1 1 1 1 1(3):由 ??
∈[,1)得,?? 2
<(1? )+(1? )+(1? )+???+(1? )=2(1? )<2 ?? ?? ?? ?? ???? 1 2 3 ?? 02即??<4又可,??=1,??=2 (?)式成要使(?)式立只取??=3??=3時(shí)(1?1)+(1?1)+(1?1)=2(1?1),即1+2
=1+1+1,??1
??2
??3
??0
??0
??2
??3由題??0,??1,??2,???,????為正整數(shù)且??0>??1>??2>???>????>1,1 1 1若??3=3,否則原式為右邊至多為
++<1,(?)式不成立3 4 51 1 1則??3=2,同理??2=3,否則原式右邊至多為
++<1,2 4 5因此可得1+2
1 1 1=++=
,化簡(jiǎn)得1=1
2>1,??0
??1 3 2
??1
6+??0 6所以3<??1<6,當(dāng)??1=4時(shí)??0=24;當(dāng)??1=5時(shí),??0=60綜上所述,(??0,??1,??2,???,????)的所有可能解為:(24,4,3,2)或(60,5,3,2)先判斷??(??)=1?1??
的單調(diào)性,再根據(jù)定義域進(jìn)一步求值域;(2)由題干和(1)知,1<??
<??
<??
時(shí),(1?1)<(1?1)<(1?1),結(jié)合(?)式判斷可確定不存在;(3)可通2 1 0
??2
??1
??0過(guò)試值法,先確定??
=2,再通過(guò)試值法進(jìn)一步確定??
1 1=3,最鎖定 =
2>1,3 2 ??1
6+??0 6則3<??1<6,分別討論??1=4和??1=5進(jìn)一步確定??0即可3.【答案】(1)解:由????=3?????1+2(??≥2且??∈???)得????+1=3(?????1+1)(??≥2且??∈???)∵??1
+1=3,∴????
+1≠0, ????+1=3,(??≥2且??∈???)∴?????1+1∴∴{????+1}是首項(xiàng)為3,公比為3的等比數(shù)列.∴????+1=(??1+1)3???1=3??.∴????=3???1,??∈???(2)解:∵??
=??(??
)=log3(3???1+1)=??,?? ??
3???1+1
3??∵????+1=??+1?3??=??+1
,??∈???,又3??=??+1+2???1>??+1>1,????
3??+1??
3??∴<1{??}(??
???
<0證明數(shù)列{??}單調(diào)遞減)??
??+1 ?? ??113∴當(dāng)??=1,取最大為 .113要使對(duì)任意的正整數(shù)??,當(dāng)??∈[?1,1]時(shí),不等式3??2
?6????+3>????恒成立,則須使3??2
?6????+13
>(??) =1??max 3??
,即??2
?2????>0,對(duì)任意??∈[?1,1]恒成立,∴??2?2??>0∴{??2+2??>0
,解得??>2或??<?2,∴實(shí)數(shù)??的取值范圍為(?∞,?2)∪(2,+∞).(3)解:|????
|=(3??+1?1)?(3???1)=2?3??,而|????
|=??,????+1
????
3??∴四邊形????????????+1????+1的面積為????=
12(|????+1????+1|+|????????|)|????????+1|1??+1=2(3??+1+
?? ??3??)?2?3
4??+1=31 3 12= =
1=12( ?
1 1)<12( ?
1 1 1)=3(? )??????
??(4??+1)
4??(4??+1)
4??
4??+1
4??
4??+4
?? ??+11+1
+?+1
1 1 1 1 1 1 1<3(1?+?+?+?+?
)=3(1?1
)<3,??1
2??2
??????
2 2 3 3 4
?? ??+1
??+1∴故1+1
+?+1<3
??????a(2){yn}tm的tRtRtn4.答】(1)證:∵數(shù)列{an}滿(mǎn)足an>0,4(??+1)???? 2???????+1 2=0,2∴2??+1
=4?
2??????
, ????+1∴∴
=2?
????,√??∴ {??∴ {??} 1列 為比列,首為a ,公為2√(2)(1)可得:√??
=a1?2n﹣1 ,an=??12???1√??,????=
????2????
=24???1??.1 ??1 11 ∵列{bn}等數(shù),∴2b2=b1+b3 11 1 ∴2×2×4×21 ??2
2??
+2×42×3,??3解得t=4或12.1 t=4時(shí),bn1
24???1??4??
=??211
,是關(guān)于n的一次函數(shù),因此數(shù)列{bn}是等差數(shù)列.t=12時(shí),bn=
????211
,bn+1﹣bn=
2(1?2??)4×3??+1
1 ,不是關(guān)于n1 因此數(shù)列{bn}不是等差數(shù)列.綜上可得t=4(3)(2)bn=
??2,111 1對(duì)任的n∈N* ,均在m∈N* ,得8a2Sn﹣a4n2=16bm成1 1即有8a4?1n(1+n)﹣a4n2=16?????12,1 8 1 4化簡(jiǎn)可得m=????12,41當(dāng)a=2k,k∈N* ,m=4??2??1
=nk2 ,任的n∈N* ,符題;4當(dāng)a=2k﹣1,k∈N* ,當(dāng)n=1,m=(2???1)2
=4??2?4??+1
=k2﹣k+1,14 4 4對(duì)任的n∈N* ,不合題.1 1綜上得當(dāng)a1=2k,k∈N* ,對(duì)意的n∈N* ,均在m∈N* ,使得8a2Sn﹣a4n2=16bm1 11(????+11
=2?√??
,再由等比數(shù)列的定義即可得證;(2)運(yùn)用等比數(shù)列通公和差列中的質(zhì)可得2b2=b1+b3 ,方可得t,對(duì)t的,驗(yàn)可到求????值可得b= 1
,任的n∈N* ,均在m∈N* ,得8a2S﹣a4n2=16b
成立,n 1n 1 m4即有8a4?1n(1+n)﹣a4n2=16?????12,討論a
為偶數(shù)和奇數(shù),化簡(jiǎn)整理,即可得到所求值.1 8 1 4 15.【答案】(1)解:假設(shè)存在一個(gè)實(shí)數(shù)??,使{????}是等比數(shù)列,,4?? 2 2 24由 ??+1=3????+???4,分令??=1,2有??2=3+1?4=3???3,2??3=3??2+2?4=
2(233
???3)?2=
???4.又??2=??1???3即(23
???3)2
=??(49
???4)?
4??2999
?4??+9=
4??2292
?4???9=0,矛盾,所以{????}不是等比數(shù)列.(2)解:因?yàn)??
=(?1)??+1[??
?3(??+1)+21]=(?1)??+12
+???4?3(??+1)+21]=[??(?1)??+1[??
??+1
??+12 ??
3??2(3?????2??+14)=?3(?1)(?????3??+21)=?3????,又??1=?(??+18),所以當(dāng)??=?18,????=0(??∈???),此時(shí)????=0.????+1 2 ?當(dāng)??≠?18時(shí),??1=?(??+18)≠0,
=?3(??∈??),此時(shí),數(shù)列{????
}?(??+18),23
為公比的等比數(shù)列.3∴????=?5(??+18)?[1?(?
2??])3)(3)解:要使??<????<??對(duì)任意正整數(shù)??成立,則??≠?18,∴??<?
3(??+18)?[1?(?5
2??)3)
]<??(??∈???)?? 3得 2??<?5(??+18)<
??2??.1?(?)3令??(??)=1?(?
2??)3)
1?(?)3,則當(dāng)??為正奇數(shù)時(shí),1<??(??)≤53
;當(dāng)??為正偶數(shù)時(shí),
5≤??(??)<1,9∴??(??)的最大值為??(1)=53
,??(??)的最值為??(2)= .595故9??35 5
(??+18)<
3??????<??+18<?3??,即????18<??<?3???185當(dāng)??<??≤3??時(shí),得????18≥?3???18,不存在實(shí)數(shù)滿(mǎn)足要求;當(dāng)??>3??時(shí),??,??,都有??<<??且??(????18,?3??18)【解析】【分析】(1)代入??1,??2,??3求??證明矛盾即可.(2)由????=(?1)??(?????3??+21),代入??+1可?? 2 3得 ??+1=?3再分況=0與≠0的況進(jìn)討即可.(3)第問(wèn)求的=?5(??+??2??18)?[1?(?)3
],代入??<????<??再參變分離求解即可.6.【答案】(1)解:
????+1
?
= 22????+1?1
? 22?????1
22(1?1)?1=4????=
? 2
=4????
? 2 =2,2?????1,由??1=1,得??1=2,所以數(shù)列{????}是首項(xiàng)為2,公差為2的等差數(shù)列,所以????
=2+(???1)×2=2??
= 2
,得????
=??+12??(2)解:由(1),知??
=2,????
4 1 1= =2(? ),??
????+2
??(??+2)
?? ??+21 1 1
1 1 1 1
1 1 1所以????=2(1?3+2?4+?+???1???+1+???
)=2(1+? ???+2 2 ??+1
)<3,??+2m,使得
<1
對(duì)于??∈???恒成立,只需??+1≥3,解得??≥5,所以m的最小值為52【解析】【分析】(1)結(jié)合遞推關(guān)系可證得????+1?????=2,且b1=2,即數(shù)列{????}是首項(xiàng)為2,公差為2的等差數(shù)列,據(jù)此可得數(shù)列{????
}的通項(xiàng)公式為????
=??+12??
;(2)結(jié)合通項(xiàng)公式裂項(xiàng)有????
????+2
1=2(???1),求和有??
1 1=2(1+?
?1)<3,據(jù)此結(jié)合單調(diào)性討論可得正整數(shù)m的最小值為3.??+2
?? 2
??+1
??+27.【答案】(1)解:設(shè)數(shù)列{????}的公比為??(??>0),??1+??1??2=10由題意有{??1??2
+??1??4
,=40∴??1=??=2,∴????=2??,∴當(dāng)??≥2時(shí)??
=??
???
=??2+7???(???1)2+7(???1)=??+3.??
???1 2 2當(dāng)??=1時(shí)??1
=
=1+7=4符合上式.2∴????=??+3.(2)解:∵??1
=1<3,????+1
?
=??,2??1 2 當(dāng)??≥2時(shí),=(??????????1)+(?????1??????2)+?+(??2???1)+=1+2+22+?2???1,∴1∴2????=
1+1+2 22
2+?23
???2+2???1
???1.2??1 1 1
???1
??+1相減整理得:????=2+2+22?+2???2?2???1=3?2???1<3.故????<3.(3):令??(??)= 1??1???1
+ 1??2???2
+??????+ 1 ,?????????∵??(??+1)???(??)= 1∵????+1?????+1
= 1 ,2??+1????4∴當(dāng)??=1時(shí),??(2)<??(1);當(dāng)??≥2時(shí),??(??+1)>??(??),∴??(??+1)>??(??)>???>??(3)>??(2)<??(1).∴??(??)
min
=??(2)=?3.2由不等式恒成立得:??
<?3,2∴??<?15.故存在整數(shù)??,使不等式恒成立,??的最大值為-16.【解析】【分析】(1)設(shè)數(shù)列{????}的公比為??(??>0),利用已知條件,列出方程組求出數(shù)列的首項(xiàng)和公比,得到????=2??,當(dāng)??≥2時(shí),????=??????????1,求出通項(xiàng)公式,驗(yàn)證首項(xiàng)即可;(2)利用累加法,結(jié)合數(shù)列求和,推出????
<3;(3)令??(??)= 1??1???1
+ 1??2???2
+??????+ 1?????????
,通過(guò)作差法,判斷??(??+1)>??(??)>???>??(3)>??(2)<??(1),求出最小項(xiàng),利用不等式求解??的最大值.8.(1)
????
,令??=1,得??1
??1,+????1=????+2+
??2=??3{????}??2=??1+??2=??3,所以??3=??1+??2+??3=2??3=3,所以?? 3.3=2(2)
????得:+????1=????+2+??1
??1
,??2
??2, ??3
??3,……,?????1
?????1
,相乘得:??1
??1??2,??2=??3
??3=??4
??4=??5
????=????+1
????=????????+1因?yàn)閿?shù)列{????}的各項(xiàng)均為非零實(shí)數(shù),所以??2????=????????+1,當(dāng)??≥2時(shí):??2?????1=?????1??????2???????2?????1=????????+1??????1????,即??2(??????????1)=????(????+1??????1),即??2????=????(????+1??????1),因?yàn)????≠0,所以????+1??????1=??2,{??2???1}??2,??2021=??1+1010??2=2021??1??2=2??1,所以??2???1=??1+(???1)??2=(2???1)??1,??2??=??2+(???1)??2=2????1,所以????=????1,所以????+1?????=??1,所以數(shù)列{????}是等差數(shù)列.(3)解:當(dāng)??1=1,??2=2時(shí),由(2)知????=??,所以|2?????2????|≤??|??2???2|,即|2???2??|≤??|??2???2|,
?? ??不妨設(shè)??>??,則2??>2??,??2>??2,所以2???2??≤????2?????2,即2???????2≤2???????2對(duì)任意正整數(shù)??,??(??>??)恒成立,則2??+1???(??+1)2≤2???????2,即2???2???????≤0對(duì)任意正整數(shù)??恒成立,設(shè)????=2?????2,??=1時(shí),??1=2?1>0;??=2時(shí),??2=4?4=0;??=3時(shí),??3=8?9=?1<0;??=4時(shí),??2=16?16=0;??=5時(shí),??5=32?25>0;當(dāng)??≥5時(shí),2??=??0+??1+??2+?+?????2+?????1+????=2(1+??+??(???1) 2 ,?? ??
?? ?? ??
)=??2
+??+2>0所以??≥5時(shí),????>0,∴2??>??2.所以??≥5時(shí),2???2???????>??2?2???????,令??2?2???????>0,∴??>??+√??2+??或??<???√??2+??(舍去).所以當(dāng)??≥5且??>??+√??2+??時(shí),2???2???????>0,所以不存在滿(mǎn)足條件的實(shí)數(shù)??.【解析】【分析】(1)由題得??1
??1
,所以??
??,得??
2??
=3,即得??
的值;(2)利用累??2=??3
2=3
3= 3 3????+1??????1=??2{??2???1},公差為??2,求出??2???1=(2???1)??1,??2??=2????1????=????1{????}(3)|2???2??|≤??|??2???2|??>??2???????2≤2???????2??,??(??>??)恒成2???2???????≤0????≥5且??≥??+√??2??時(shí),2???2???????>0,即得解.9.【答案】解:(I)??3=7,??4=15(Ⅱ)猜想:????=2???1??2???
(??+1)2?(??
(??+1)2??+1證明由意?? =?? ???1 ??+1?????1+1
=?? ???1 ?????1+1
=?? ?1?????1+1所以??
+1=(????+1)2
,即????+1+1=????+1
對(duì)所有??≥2且??∈???都成立,??+1
?????1+1
????+1
?????1+1易知????+1≠0,所以{????+1}是以2為首項(xiàng),以2為公比的等比數(shù)列所以????+1=2??,即:????=2???1(Ⅲ)????=
2???52??由??(??)???≤16,所以 ?16≤??(??)???≤16,?? | 35 | 35 ?? 35即???16≤??(??)≤??+16
恒成立,所以???16≤??(??)
且??+16≥??(??)35 ?? 35
35 ??min
35 ??min??(??)=??+1??+2
= ??+2+1??+2
?2??(??)=??+1
在(0,1)遞減,(1,+∞)遞增,所以??(??)在(?2,?1)遞減,(?1,+∞)遞增.又因?yàn)??
=2???5,??
???
=2???3? 2???5=?2??+7
,當(dāng)??=1,2,3時(shí)??
???
>0,當(dāng)??
??+1
??
2??
2??+1
??+1 ????=4,5,6…時(shí)??
???
<0,以(??) =
{??,??} ??
=3,(??)
=??
=?3
,而當(dāng)??≥3時(shí),????
??+1 ??=2???5>0.2??
??max
max34
4 16
??min 1 2所以??(??) =
{??(??),??(??)}=??(??) =3+16≤??+16
,所以??≥3,??max
max 1 4
4 16 35 35 16注意到??(?
3 1所當(dāng) 時(shí) ?? 而 )=??(0), ??≥3 ,??(??)≥??(??所當(dāng) 時(shí) ?? 而 2 4
,所以??(??1)>??(??2),即??(??)
=??(??) =9≥???16
,所以??≤109??min
2 28 35
140綜上??∈[3
,109]【解析】【分析】(I)根據(jù)題意,直接代入數(shù)據(jù),即可得出答案。題所條理配并簡(jiǎn)可到個(gè)首和比是2比數(shù),用比列項(xiàng)公式????+1=(??1+1)?????1 ,可出案。(Ⅲ)由an對(duì)bn進(jìn)行整理分析,根據(jù)題意解該不等式,對(duì)??(??)進(jìn)行函數(shù)單調(diào)性分析,分別求出??(????)的最??
+1=?2?????3+1=????+1,∴ 1
=3????+4=3+1
1,所以 ???+1
3????+4
????+1+1
????+1
????+1
????+1+11 =3{1
}是項(xiàng)為3差為 3等數(shù),以 1
=3??,∴??
=1?1.????+1
????+1
????+1
?? 3??12 ??=
135
2???1
? ??(??+1)=():已知 ??
,設(shè)??(??)=√2??+1??...2?? 246
(??≥1,??∈ ??2??
),由
??(??)√4??2+8??+3<1得??≥√3
,即??的最小值為√3.4??2+8??+4 2 2由????+1
=?2?????33????+4
1化簡(jiǎn)可得????+1+1
?1????+1
=3,從而判斷等差數(shù)列與通項(xiàng);(2)由(1)知
=1
,設(shè)??(??)=√2??+112
?3?4
5...6
2???1,由2??
??(??+1)??(??)
=√4??2+8??+34??2+8??+4
<1,得??≥√3.211.【答案】解:(Ⅰ)假設(shè)數(shù)列{????}是“p-擺動(dòng)數(shù)列”,即存在常數(shù)p,總有2???1<??<2??+1對(duì)任意??∈???成立,??=11<??<3;取??=23<??<5p{????}“p-”由????=(?
1??)2)
,于是????????+1=(?
12??+1)2)
<0對(duì)任意??∈???
成立,其中??=0.所以數(shù)列{????}是“p-擺動(dòng)數(shù)列”.(Ⅱ)由數(shù)列{????}為“p-擺動(dòng)數(shù)列”,又??1=1,所以??=1,即存在常數(shù)1<??<1,使對(duì)任意??∈???,總有(??
???)(??
???)<0成立,及2 2 2
??+1 ??(????+2???)(????+1???)<0,所以(????+2???)(???????)>0.因?yàn)??1>??,所以??3>??,?,??2??+1>??.同理因?yàn)??2
<??,所以??4
<??,?,
<??.所以??2??
<??<??2???1
1,即??2???1+1
<??<??2???1,解得??2???1
>√5?12
,即??≤√5?1.21同理??2??+1
>
<√5?12
,即??≥√5?1.2綜上??=√5?1.2(Ⅲ)證明:由????=(?1)???(2???1),????=(?1)+3+(?5)+?+(?1)???(2???1).??當(dāng)n為偶數(shù)時(shí),????=2×2=??;n
=2×???1+(?1)???(2???1)=???.2所以,????=(?1)?????.??=0n????????+1=(?1)2??+1???(??+1)<0{????}是“p-”.當(dāng)n為奇數(shù)時(shí),因?yàn)????=???,{????}單調(diào)遞減,所以????≤??1=?1,只要??>?1即可.當(dāng)n為偶數(shù)時(shí),{????}單調(diào)遞增,????≥??2,只要??<2即可.綜上,?1<??<2,所以p的取值范圍是(?1,2).【解析】【分析】(Ⅰ)假設(shè)數(shù)列{????}是“p-擺動(dòng)數(shù)列”,通過(guò)對(duì)??取特殊值,可以證明出數(shù)列{????}不是“p-擺動(dòng)數(shù)列”;通過(guò)數(shù)列{????}的通項(xiàng)公式和指數(shù)運(yùn)算的法則,結(jié)合
“p-擺動(dòng)數(shù)列”的定義,可以證明出數(shù)列{????
}是“p-擺動(dòng)數(shù)列”;(Ⅱ)的值,由{????}是“p-”p的取{????}是“p-”ppnn“p-”{????}是“p-擺動(dòng)數(shù)列,分別當(dāng)n為奇數(shù)時(shí)、當(dāng)n為??12.【答案】(1)解:設(shè)等差數(shù)列{??}的公差為??,偶數(shù)時(shí),利用????的單調(diào)性,求出常數(shù)p的取值范圍即可.??則??
=????
+??(???1)??,從而????=??
+???1??,?? 1 2
?? 1 2所以當(dāng)???2時(shí),??????????1=(??+???1??)?(??????2??)=??,?? ???1 1 2 1 2 2所以數(shù)列
????{??}
是等差數(shù)列;(2)解:因?yàn)??1=1,{√????}是公差為1的等差數(shù)列,所以√??1=1,所以=+(???1)=??=??2,所以??+1????+2=[(??+1)(??+2)]2=(1+3??+2)2,??????2 2 2????????顯然??=1,2滿(mǎn)足條件,??=3不滿(mǎn)足條件,當(dāng)???4時(shí),因?yàn)??2?3???2=??(???3)?2?4(4?3)?2=2>0,0<3??+2<11<13??+2<2????+1?????+2
不是整數(shù),??2
??2
????2綜上所述,正整數(shù)??的取值集合是{1,2};(3)解:設(shè)等差數(shù)列{????}的公差為??,則????=??1+(???1)??,????=??????,所以????=????????????1=????(???2),?????1所以數(shù)列{????}是首項(xiàng)和公比均大于0的等比數(shù)列,設(shè)公比??=????,下面證明:??1+?????????+????,其中??,??為正整數(shù),且??+??=1+??,因?yàn)????????)=??1?????1???1?????1???1?????1=??1(?????1?1)(?????1?1),??>1??=???????1?0,???1?0,所以?????1?1?0,?????1?1?0,所以??1+?????????+????,當(dāng)??=1時(shí),??1+????=????+????,當(dāng)0<??<1是,??=????為減函數(shù),因?yàn)???1?0,???1?0,所以?????1?1?0,?????1?1?0,所以??1+?????????+????,+?+??????+??=1??,????????????????)?(??1+????)+(??2+?????1)+(??3+?????2)+?+(????+??1)=(??1+??2+?+????)+(????+?????1+?+??1),所以??1+??2+?+???????1+????.?? 2由??
=????
+??(???1)??,則????=??
+???1??,根據(jù)等差數(shù)列的定義可證.(2)由?? 1 2
?? 1 2?? 3??+2??條件得??=??2,則??+1??+2=(1+ )2,驗(yàn)證??=1,2,3的況當(dāng)???4時(shí),0<3??+2<???? 2
??2
??21,可得
????+1????+2??2 .(3){????}0????再證明??1+?????????+????,其中??,??為正整數(shù),且??+??=1+??,則由??(??1+????)=(??1+????)+(??1+????)+?+(??1+????)?(??1+????)+(??2+?????1)+(??3+?????2)+?+(????+??1),可證明結(jié)論.13.【答案】(1)解:由????=2?????2可得????+1=2????+1?2,兩式相減可得????+1=2????,故數(shù)列{????}是以2為公比的等比數(shù)列.又??1=2??1?2,得??1=2,∴????=??1?????1=2×2???1=2??.(2)解:由(1)知????=2??,????+1=2??+1,由題意????+1
=????
+(??+2?1)????
,即2??+1=2??+(??+1)????
,∴????
=2??.??+1假設(shè)在數(shù)列{????}中存在三項(xiàng)????,????,????(其中??,??,??成等差數(shù)列)成等比數(shù)列,則(????)2=?????????,即(2??)2=2??
?2??
.化得 4??
= 2??+?? .??+1
??+1
??+1
(??+1)(??+1)又因?yàn)??,??,??成等差數(shù)列,∴??+??=2??,∴4??∴(??+1)2
= 22??????+??+??+1
= 4??????+2??+1
,得(??+1)2=????+??+??+1,∴??2=????,2又∵??+??=2??,∴(??+??)2=????,2即(?????)2=0,∴??=??,即??=??=??,這與題設(shè)矛盾.所以在{????}中不存在三項(xiàng)????,????,????(其中??,??,??成等差數(shù)列)成等比數(shù)列.【解析】【分析】(1)利用????與????的關(guān)系式結(jié)合分類(lèi)討論的方法,從而求出數(shù)列{????}的通項(xiàng)公式。(2)由(1)知????=2??,????+1=2??+1,再利用在????與????+1之間插入??個(gè)數(shù),使這??+2個(gè)數(shù)組成一個(gè)公差為????的等差數(shù)列,得出????+1=????+(??+2?1)????,即2??+1=2??+(??+1)????,∴????
=2????+1
,再利用等比中項(xiàng)公式和等差中項(xiàng)公式得出??=??=??,再結(jié)合反證法得出與題設(shè)矛盾,所以在{????}中不存在三項(xiàng)????,????,????(其中??,??,??成等差數(shù)列)成等比數(shù)列。14.【答案】(1)解:由已知??2+??3+??4=28且??3+2是??2,??4的等差中項(xiàng)得{??2+??3+??4=282(??3+2)=??2+??4
,解得??3
=8,8 1代入2(??+2)=??+?? ,得 +8??=20,得??=2或??= ,3 2 4 ?? 2因?yàn)閧????}遞增等比數(shù)列,所以??=2,因?yàn)??3=8,所以??1??2=8,所以??1=2,所以????=2·2???1=2??.(2)解:由????=????log1????,所以????=2??·log12??=???·2??,2 2????=??1+??2+??3+?=?1(1×2+2×22+3×23+?+??·2??),2????=?(1×22+2×23+3×24+?+??·2??+1),兩式相減得:?????
=?(2+22+23+?+2??)+??·2??+1=?2(1?2??)+??·2??+1,1?2所以????=(1???)2??+1?2,??·2??+1>302??+1>32,??+1>5,??>4,??·2??+1>30??5.【解析】【分析】(1)由已知??2+??3+??4=28且??3+2是??2,??4的等差中項(xiàng),聯(lián)立方程組,求得2??3=8,代入求得??=2,即可求解等比數(shù)列的通項(xiàng)公式;(2)由????=????log1????,求得????=???·2??,利用乘公比錯(cuò)位相減法,求得????=(1???)2??+1?2,列出不等式,即可求解.215.【答案】(1)解:由題意,數(shù)列{????}是等差數(shù)列,則對(duì)任意??∈???,?? 1 1可得????+1?????=????+2?????+1,即2????+1=????+????+2,即
??+1=2(????+????+2),故??=2.(2)解:由??=?1時(shí),??
1=?(??
+?? ),2
2 ??
??+2即2????+1=??????????+2,????+2+????+1=?(????+1+????),故????+3+????+2=?(????+2+????+1)=????+1+????.當(dāng)??是偶數(shù)時(shí),??
=??
+??
+??
+??
+?+??
+??
??=(??
+??)=??;?? 1
2 3 4
???1
?? 2 1 2當(dāng)??是奇數(shù)時(shí),??2+??3=?(??1+??2)=?2,=+??2+??3+??4+?+?????1+???? =+(??2+??3)+(??4+??5)+?+(?????1+????),=1+???1×(?2)=2???22???,??=2???1 ?綜上可得,????={
??,??=2?? (??∈??).(3)解:若{????
是等比數(shù)列,則公比??=??2=??,}??1}由題意??≠1,故????=?????1,????+1=????,????+2=????+1.①若????+1為等差中項(xiàng),則2????+1=????+????+2,即2????=?????1+????+1,2??=1+??2,解得??=1(舍去);②????2????=????+1+????+2,即2?????1=????+????+1,2=??+??2,因?yàn)??≠1,得??=?2,??=????+1= ????
=??
=?2.????+????+2
?????1+????+1
1+??2 5③若????+2為等差中項(xiàng),則2????+2=????+????+1,即2????+1=????+?????1,2??2=??+1,因?yàn)??≠1,解得??=?12
,??=??1+??2
=?2,5綜上,存在實(shí)數(shù)??滿(mǎn)足題意,??=?2.5【解析】【分析】(1)由等差數(shù)列等差中項(xiàng)的性質(zhì)即可求得??的值;?? 1(2)由
??+1=?2(????+????+2),????+2+????+1=?(????+1+????),????+3+????+2=?(????+2+????+1)=????+1+??????????;(3)????16.【案】(1)解:a1=n﹣1,察鄰站ak ,ak﹣1之的系,由題知 k= k﹣1﹣(k﹣1)+(n﹣k),∴ k﹣ 依讓k取2,3,4,…,k得k﹣1個(gè)式這k﹣1個(gè)式加得k=nk﹣k2(n,k∈N+ ,1≤k≤n).(2): ,當(dāng)n偶時(shí)取k= ,ak取得大值 ;當(dāng)n奇時(shí)取k=或,ak得大值.17.(1)??2?6??+8=02,4??2=2??3=4.??=2{????}????=2???1(2)解:由(1)知2???????=???2??,所以????=1×2+2×22+???+??×2??,①2?=1×22+2×23+???+(???1)?2??+??×2??+1,②由①-②得?????=2+22+23+???+2?????×2??+1,??即???=2?2?2???×2??+1=2??+1?2???×2??+1=(1???)2??+1?2,所以??
=2+(???1)?2??+1?? 1?2 ??【解析】【分析】(1)求出方程兩根,得到公比,求出通項(xiàng)公式;(2)用錯(cuò)位相減法求和.18.【案】(1)解題意可得???? 2=(????+??)(???????)+????2,化簡(jiǎn)得(???1)??2=0,又??≠0,以??=1(2)解:將??1=1,??2=2,??3=4代入條件,可得4=1×4+??,解得??=0,所以???? 2=????+1?????1,以列{????}是項(xiàng)為1,公比??=2等列,以????=2???1.欲存在??∈[3,7],使得???2???1??????,即?????????2???1對(duì)任意??∈???都成立,則7???????2???1,所以??????2
對(duì)任意??∈???都成立.令??
=???7
,則??
???
=???6????7=8???,?? 2???1
??+1
??
2???1
2??所以當(dāng)??>8時(shí),????+1<????;當(dāng)??=8時(shí),??9=??8;當(dāng)??<8時(shí),????+1>????.所以????
=??8
=1
,所以??的最小值為11281(3)解:因?yàn)閿?shù)列{????}不是常數(shù)列,所以???2.①若??=2,則????+2=????恒成立,從而??3=??1,??4=??2,所以1??2 2=2+??(??2???1)21{??1
2=??2
2+??(??2
???)2,所以??(??2???1)2=0??≠0??2=,可得{????}??=2.1,??=3???2②若??=3,取????={2,??=3???1(??∈???)(*),滿(mǎn)足????+3=????恒成立.?3,??=3??由??2 2=??1??3+??(??2???1)2,得??=7.則條式為???? 2=????+1?????1+7.由22=1×(?3)+7,知??3???12=??3???2??3??+??(??2???1)2;由(?3)2=2×1+7,知??3??2=??3???1??3??+1+??(??2???1)2;由12=(?3)×2+7,知??3??+12=??3????3??+2+??(??2???1)2.(*)所以??的最小值為3【解】分】(1)數(shù)列等數(shù)時(shí)用an和差d示出an-1,an+1,入到推中求 λ;(2)3λ=0(3)對(duì)T=2,3分別討論排除T=2時(shí),當(dāng)T=3時(shí)能滿(mǎn)足題意,得到T的最濁值。19.(1)????2=5??4+??5=??3+13,5+2d+5+3d=5+d+13??=2.又因?yàn)??2=5,所以????=??2+(???2)???=2??+1.3因?yàn)??2??4=81,所以??2=81,b=9,即??1??2=9,①33又??=13,所以??1(1???)=13,即??(1+??+??2)=13,②3 1??? 1由除②,得 ??1??2 =9,??1(1+??+??2) 13化簡(jiǎn)得4??2?9???9=0,因?yàn)??>0,所以??=3,所以????=??3?????3=9×3???3=3???1.(2)解:因?yàn)????=????????=(2??+1)?3???1,所以????=3×30+5×31+7×32+?+(2??+1)?3???1,③3????=3×31+5×32+7×33+?+(2??+1)?3??,④由③減④,得?2????=3+2(31+32+?+3???1)?(2??+1)?3??,所以
=3+2×3(3???1?1)?(2??+1)?3??=?2???3??.3?1所以????=???3??.??4+??5
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 合伙合同糾紛審理思路
- 2025年山南貨運(yùn)資格證考題
- 2025年南通a2貨運(yùn)資格證考試題
- 2025年西寧年貨運(yùn)從業(yè)資格證
- 2025年長(zhǎng)春貨運(yùn)資格證模擬考試題庫(kù)下載
- 《蜱螨及蜱螨病》課件
- 房地產(chǎn)銷(xiāo)售班組實(shí)名管理
- 石材助理勞動(dòng)合同范例
- 招標(biāo)投標(biāo)流程優(yōu)化保證
- 大型游樂(lè)場(chǎng)預(yù)應(yīng)力施工合同
- 公共經(jīng)濟(jì)學(xué)智慧樹(shù)知到期末考試答案2024年
- 移動(dòng)互聯(lián)網(wǎng)時(shí)代下的營(yíng)銷(xiāo)策略創(chuàng)新研究
- 玻璃幕墻工程質(zhì)量控制
- 生涯發(fā)展展示
- 項(xiàng)目經(jīng)理管理辦法
- 心理健康測(cè)試題目及答案小學(xué)生版
- 神經(jīng)系統(tǒng)練習(xí)題附有答案
- 海闊天空音樂(lè)
- 2024年中國(guó)國(guó)際貨運(yùn)航空股份有限公司招聘筆試參考題庫(kù)含答案解析
- 梁湘潤(rùn)《子平基礎(chǔ)概要》簡(jiǎn)體版
- 《開(kāi)關(guān)電源基礎(chǔ)知識(shí)》課件
評(píng)論
0/150
提交評(píng)論