版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
H62SPCChapter3:LaplaceTransform2016-2017BlockDiagramReductionTechniquesIBlocksinCascadeKeyPoint:Thekeythingforallblockdiagrammanipulationandreductionisthatthefunctionforthesystemoutput(orthetotalsystemtransferfunction)shouldneverchangeasaresultofblockdiagrammanipulationG1xy
G2u
yG1G2xBlockDiagramReductionTechniquesIIMovingatakeoffpointaheadofablockMovingatakeoffpointbehindablockYXZGYXZGGy=Gxz=Gxy=Gxz=GxYXZGYXG
Zy=Gxz=xy=Gx
BlockDiagramReductionTechniquesIIIMovingsummingjunctionszxy++
Gzxy++
GG
zxy++
Gzx++G
y
BlockDiagramReductionTechniquesIVReductionoffeed-forwardpaths(BlocksinParallel)YXG++Hxy
BlockDiagramReductionTechniquesVReductionoffeedbackloopsYXG++HxyeHy
BlockDiagramReductionTechniquesVIReductionoffeedbackloopsYXG+-HxyeHy
Thisoneisverycommonlyusedinclosedloopcontrolsystemanalysis!BlockDiagramReductionTechniquesVIISystemswithMultipleInputsThereisoftenmorethanoneinputintoasystem…G1xzG2u++yXandYarebothinputsintothesystem,zistheoutput
Note-thiscouldalsobesolvedusingthesuperpositiontheorem--Assumey=0,calculateZ-Assumex=0,calculateZ-FullzisthesumofthesetworesultsFirstOrderSystemsIfanelementofenergystorageisassociatedwithanelementofenergydissipationthenthenatureoftheoutputisgivenby:
x=inputvariabley=outputvariableT=Timeconstantk=gainExample:vvRvLiRL
Comparetostandardform:
ResponseofafirstOrderSystem:UnitStepWeusea“StepInput”totesttheresponseofasystemtoinstantaneouschangesininput:x(t)=u(t):Itispossibletomathematicallyprovethatthesolutiontothedifferentialequationis:y0k
tTransientStateandSteadyState5TTransientStateSteadyStateResponseofafirstOrderSystem:UnitCosinevRvLiR
TheDOperator
DisamathematicaloperatorwhichrepresentstheprocessofdifferentiationwithrespecttotimeExample:
KeyPointsBlockDiagramReductionDeterminingsystemresponseWehavealreadydeducedthattheresponseofsystemstostimuliisusuallydeterminedbyadifferentialequationThismeansthatforagiveninput(astepinputforexample),inordertodeterminehowsystemresponds,wemustsolvethedifferentialequation.Thiscanbecarriedoutusingtheusualtechniques,butthereisabetterway,whichlendsitselfverywelltocontroldesignasitgivesusatransferfunction.ThemethodusesLAPLACETRANSFORMSDifferentialEquationInputConvertusingtheLaplaceTransformSolvesysteminLaplacedomainConvertbackintothetimedomainSolutionPierre-SimonLaplace:TheFrenchNewtonDevelopedmathematicsinastronomy,physics,andstatisticsBeganworkincalculuswhichledtotheLaplaceTransformFocusedlateroncelestialmechanicsOneofthefirstscientiststosuggesttheexistenceofblackholesLaplaceTransform:IdeasTheLaplaceTransformconvertsintegralanddifferentialequationsintoalgebraicequationsThisislikephasors,but:Appliestogeneralsignals,notjustsinusoidsHandlesno-steady-stateconditionsAllowsustoanalyzeComplicatedcircuitswithsources,Ls,Rs,andCsComplicatedsystemswithintegrators,differentiators,gainsHistoryoftheTransform
Eulerbeganlookingatintegralsassolutionstodifferentialequationsinthemid1700’s:Lagrangetookthisastepfurtherwhileworkingonprobabilitydensityfunctionsandlookedatformsofthefollowingequation:Finally,in1785,LaplacebeganusingatransformationtosolveequationsoffinitedifferenceswhicheventuallyleadtothecurrenttransformTheLaplaceTransform
Notes:sisusuallycomplex(notreal)sisaconstantforthepurposeofintegrationTransformationisonlyvalidfort0NotationforLaplaceTransformsTimeDomains-Domain
transformsLowercaseUppercaseWewillbeinterestedinthesignaldefinedfort>=0TheLaplaceTransformofasignal(function)f(t)isthefunctiondefinedby:s
RestrictionsTherearetwogoverningfactorsthatdeterminewhetherLaplacetransformscanbeused:f(t)mustbeatleastpiecewisecontinuousfort≥0|f(t)|≤MeγtwhereMandγareconstantsSincethegeneralformoftheLaplacetransformis:itmakessensethatf(t)mustbeatleastpiecewisecontinuousfort≥0.Iff(t)wereverynasty,theintegralwouldnotbecomputable.ContinuityBoundednessThiscriterionalsofollowsdirectlyfromthegeneraldefinition:Iff(t)isnotboundedbyMeγtthentheintegralwillnotconverge.LaplaceTransformTheoryGeneralTheoryExampleConvergenceLaplaceTransformsSomeLaplaceTransformsWidevarietyoffunctioncanbetransformedInverseTransformOftenrequirespartialfractionsorothermanipulationtofindaformthatiseasytoapplytheinverseLaplaceTransformsofCommonFunctions:UnitRampfunction
1f(t)tLaplaceTransformsofCommonFunctions:Sinusoid
f(t)t1f(t)tExponentialDecayfunction
f(t)t
Sinusoidalfunction
LaplaceTransformsofCommonFunctionsIIf(t)tDampedSinusoidfunction
LaplaceTransformsofCommonFunctionsIIIf(t)tTheunitimpulse(deltadirac)function
Unitarea
....Workingforthisistedious…
Properties:LinearityTheLaplaceTransformislinear:iffandgareanysignals,andaisanyscalar,wehave:i.e.homogeneity&superpositionhold.Example:Properties:One-to-one
What“almost”means?Iffandgdifferonlyatafinitenumberofpoints(wheretherearen’timpulses),thenF=GTimeScalingdefinesignalgbyg(t)=f(at),wherea>0;then G(s)=(1/a)F(s/a)makessense:timesarescaledbya,frequenciesby1/a.Let’scheck:Whereτ=atExponentialScaling
TimeDelay
Example:Timedelay
DerivativesintheLaplaceDomainI
sF(s)
Wheref(0)istheinitialcondition(i.e.it’svalueatt=0)ofthefunction.Ifthereisn’tonethenf(0)=0Example:Derivation
DerivativesintheLaplaceDomainII
Similarexpressionscanbederivedforhigherorderdifferentials
......Iftherearenoinitialconditionsthenthesee????(??),??2????and??3????respectivelyExample:RLCircuitTransferfunctionvvRvLiRL
Withnoinitialconditions:
iI(s)di/dtsI(s)vV(s)Assumingthevoltage,V(s),istheinput,andthecurrentwe’reconsidering,I(s)istheoutput,wecanconvertthisintoatransferfunction:
Example:RLCCircuitTransferfunction
vvRvLivC
Thistime,let’sassumethatthecapacitorvoltageistheoutputthatwewanttoderiveatransferfunctionforWithzeroinitialconditions:vc
VC(s)dvc/dtsVC(s)vV(s)
Rearrangingasatransferfunction:
IntegralintheLaplaceDomainIILetgbetherunningintegralofasignalf,i.e.,????=0??????????Then????=1????(??)i.e.,time-domainintegralesdivisionbyfrequencyvariablesExample:????=??(??),so????=1;gisaunitstepfunction????=1??fisaunitstepfunction,then????=1??;gisaunitrampfunction(g(t)=tfort>=0), ????=1??2IntegralintheLaplaceDomainII
Multiplicationbyt
Multiplicationbyt:Example
ConvolutionTheconvolutionofsignalsfandg,denoted?=?????,isthesignal???=0?????????????????Sameas???=0?????????????????;inotherwords?????=?????(verygreat)importancewillsooneclearIntermsofLaplaceTransform:????=??????(??)LaplaceTransformturnsconvolutionintomultiplication.Convolution:ProveLet’sshowthat??????=????????????=??=0∞(??=0?????????????????)???????????=??=0∞??=0????????????????????????????Whereweintegrateoverthetriangle0≤??≤??Changeorderofintegration:????=??=0∞??=??∞??????????????????????????Changeviabletto??=?????;????=????;regionofintegrationes ??≥0,??≥0Convolution:Example
FindingtheLaplaceTransform
LaplaceTransformtablesLaplaceTransformforODEsEquationwithinitialconditionsLaplacetransformislinearApplyderivativeformulaRearrangeTaketheinverseLaplaceTransforminPDEsLaplacetransformintwovariables(alwaystakenwithrespecttotimevariable,t):Inverselaplaceofa2dimensionalPDE:CanbeusedforanydimensionPDE:ODEsreducetoalgebraicequationsPDEsreducetoeitheranODE(iforiginalequationdimension2)oranotherPDE(iforiginalequationdimension>2)TheTransformreduc
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度創(chuàng)意集市攤位租賃管理規(guī)范3篇
- 二零二五年度儲(chǔ)油罐銷售渠道開發(fā)合作合同4篇
- 2025版土地交易居間合同范本大全:土地資源整合與開發(fā)合作3篇
- 二零二五年度高空作業(yè)搭棚安全承包協(xié)議4篇
- 二零二四年度醫(yī)院醫(yī)療廢物分類收集及處理合同3篇
- 二零二五版碼頭貨物安全檢查與檢驗(yàn)合同3篇
- 二零二四停車場(chǎng)新能源汽車充電站運(yùn)營合同3篇
- 專利資產(chǎn)反擔(dān)保特定合同版B版
- 2025年度音樂劇詞曲創(chuàng)作及演出版權(quán)合同范本4篇
- 二零二四年度住宅小區(qū)水電設(shè)施全面維護(hù)及保養(yǎng)服務(wù)合同3篇
- 國家中醫(yī)藥管理局發(fā)布的406種中醫(yī)優(yōu)勢(shì)病種診療方案和臨床路徑目錄
- 2024年全國甲卷高考化學(xué)試卷(真題+答案)
- 汽車修理廠管理方案
- 人教版小學(xué)數(shù)學(xué)一年級(jí)上冊(cè)小學(xué)生口算天天練
- (正式版)JBT 5300-2024 工業(yè)用閥門材料 選用指南
- 三年級(jí)數(shù)學(xué)添括號(hào)去括號(hào)加減簡(jiǎn)便計(jì)算練習(xí)400道及答案
- 蘇教版五年級(jí)上冊(cè)數(shù)學(xué)簡(jiǎn)便計(jì)算300題及答案
- 澳洲牛肉行業(yè)分析
- 老客戶的開發(fā)與技巧課件
- 計(jì)算機(jī)江蘇對(duì)口單招文化綜合理論試卷
- 成人學(xué)士學(xué)位英語單詞(史上全面)
評(píng)論
0/150
提交評(píng)論