版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
四川省資陽市樂至縣寶林中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)是公比為的等比數(shù)列,則“”是“為遞增數(shù)列”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件2.若函數(shù)在上為增函數(shù),則a的取值范圍為()A. B.C. D.3.對任意實(shí)數(shù)k,直線與圓的位置關(guān)系是()A.相交 B.相切C.相離 D.與k有關(guān)4.過點(diǎn)P(2,1)作直線l,使l與雙曲線-y2=1有且僅有一個公共點(diǎn),這樣的直線l共有A.1條 B.2條C.3條 D.4條5.已知三個頂點(diǎn)都在拋物線上,且為拋物線的焦點(diǎn),若,則()A.6 B.8C.10 D.126.已知等比數(shù)列滿足,,則()A. B.C. D.7.函數(shù)的圖象大致為()A. B.C. D.8.“”是直線與直線平行的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知1與5的等差中項是,又1,,,8成等比數(shù)列,公比為,則的值為()A.5 B.4C.3 D.610.雙曲線的漸近線方程和離心率分別是A. B.C. D.11.已知a,b為正數(shù),,則下列不等式一定成立的是()A. B.C. D.12.過拋物線()的焦點(diǎn)作斜率大于的直線交拋物線于,兩點(diǎn)(在的上方),且與準(zhǔn)線交于點(diǎn),若,則A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,棱長為1的正方體,點(diǎn)沿正方形按的方向作勻速運(yùn)動,點(diǎn)沿正方形按的方向以同樣的速度作勻速運(yùn)動,且點(diǎn)分別從點(diǎn)A與點(diǎn)同時出發(fā),則的中點(diǎn)的軌跡所圍成圖形的面積大小是________.14.若直線與圓有公共點(diǎn),則b的取值范圍是_____15.已知等差數(shù)列公差不為0,且,,等比數(shù)列,則_________.16.某班有位同學(xué),將他們從至編號,現(xiàn)用系統(tǒng)抽樣的方法從中選取人參加文藝演出,抽出的編號從小到大依次排列,若排在第一位的編號是,那么第四位的編號是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)任意,恒成立,求的取值范圍.18.(12分)已知雙曲線:的兩條漸近線所成的銳角為且點(diǎn)是上一點(diǎn)(1)求雙曲線的標(biāo)準(zhǔn)方程;(2)若過點(diǎn)的直線與交于,兩點(diǎn),點(diǎn)能否為線段的中點(diǎn)?并說明理由19.(12分)(1)證明:;(2)已知:,,且,求證:.20.(12分)為了調(diào)查某蘋果園中蘋果的生長情況,在蘋果園中隨機(jī)采摘了個蘋果.經(jīng)整理分析后發(fā)現(xiàn),蘋果的重量(單位:)近似服從正態(tài)分布,如圖所示,已知,.(1)若從蘋果園中隨機(jī)采摘個蘋果,求該蘋果的重量在內(nèi)的概率;(2)從這個蘋果中隨機(jī)挑出個,這個蘋果的重量情況如下.重量范圍(單位:)個數(shù)為進(jìn)一步了解蘋果的甜度,從這個蘋果中隨機(jī)選出個,記隨機(jī)選出的個蘋果中重量在內(nèi)的個數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.21.(12分)已知數(shù)列的前項和分別是,滿足,,且.(1)求數(shù)列的通項公式;(2)若數(shù)列對任意都有恒成立,求.22.(10分)在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)、的距離之和等于,設(shè)點(diǎn)的軌跡為,直線與交于、兩點(diǎn)(1)求曲線的方程;(2)若,求的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】當(dāng)時,不是遞增數(shù)列;當(dāng)且時,是遞增數(shù)列,但是不成立,所以選D.考點(diǎn):等比數(shù)列2、C【解析】求出函數(shù)的導(dǎo)數(shù),要使函數(shù)在上為增函數(shù),要保證導(dǎo)數(shù)在該區(qū)間上恒正即可,由此得到不等式,解得答案.詳解】由題意可知,若在遞增,則在恒成立,即有,則,故選:C.3、A【解析】判斷直線恒過定點(diǎn),可知定點(diǎn)在圓內(nèi),即可判斷直線與圓的位置關(guān)系.【詳解】由可知,即該圓的圓心坐標(biāo)為,半徑為,由可知,則該直線恒過定點(diǎn),將點(diǎn)代入圓的方程可得,則點(diǎn)在圓內(nèi),則直線與圓的位置關(guān)系為相交.故選:.4、B【解析】利用幾何法,結(jié)合雙曲線的幾何性質(zhì),得出符合條件的結(jié)論.【詳解】由雙曲線的方程可知其漸近線方程為y=±x,則點(diǎn)P(2,1)在漸近線y=x上,又雙曲線的右頂點(diǎn)為A(2,0),如圖所示.滿足條件的直線l有兩條:x=2,y-1=-(x-2)【點(diǎn)睛】該題考查的是有關(guān)直線與雙曲線的公共點(diǎn)有一個的條件,結(jié)合雙曲線的性質(zhì),結(jié)合圖形,得出結(jié)果,屬于中檔題目.5、D【解析】設(shè),,,由向量關(guān)系化為坐標(biāo)關(guān)系,再結(jié)合拋物線的焦半徑公式即可計算【詳解】由得焦點(diǎn),準(zhǔn)線方程為,設(shè),,由得則,化簡得所以故選:D6、D【解析】由已知條件求出公比的平方,然后利用即可求解.【詳解】解:設(shè)等比數(shù)列的公比為,因?yàn)榈缺葦?shù)列滿足,,所以,所以,故選:D.7、A【解析】由題意首先確定函數(shù)的奇偶性,然后考查函數(shù)在特殊點(diǎn)的函數(shù)值排除錯誤選項即可確定函數(shù)的圖象.【詳解】由函數(shù)的解析式可得:,則函數(shù)為奇函數(shù),其圖象關(guān)于坐標(biāo)原點(diǎn)對稱,選項CD錯誤;當(dāng)時,,選項B錯誤.故選:A.【點(diǎn)睛】函數(shù)圖象的識辨可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢.(3)從函數(shù)的奇偶性,判斷圖象的對稱性.(4)從函數(shù)的特征點(diǎn),排除不合要求的圖象.利用上述方法排除、篩選選項8、C【解析】先根據(jù)直線平行的充要條件求出a,然后可得.【詳解】若,則,,顯然平行;若直線,則且,即.故“”是直線與直線平行的充要條件.故選:C9、A【解析】由等差中項的概念列式求得值,再由等比數(shù)列的通項公式列式求解,則答案可求.【詳解】由題意,,則;又1,,,8成等比數(shù)列,公比為,,即,,故選:.10、A【解析】先根據(jù)雙曲線的標(biāo)準(zhǔn)方程,求得其特征參數(shù)的值,再利用雙曲線漸近線方程公式和離心率定義分別計算即可.【詳解】雙曲線的,雙曲線的漸近線方程為,離心率為,故選A.【點(diǎn)睛】本題主要考查雙曲線的漸近線及離心率,屬于簡單題.離心率的求解在圓錐曲線的考查中是一個重點(diǎn)也是難點(diǎn),一般求離心率有以下幾種情況:①直接求出,從而求出;②構(gòu)造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解;④根據(jù)圓錐曲線的統(tǒng)一定義求解11、A【解析】構(gòu)造新函數(shù),以函數(shù)單調(diào)性把不等式轉(zhuǎn)化為整式不等式即可解決.【詳解】不等式可化為:令,則則函數(shù)為單調(diào)增函數(shù).由可得故選:A12、A【解析】分別過作準(zhǔn)線的垂線,垂足分別為,設(shè),則,,故選A.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】畫出符合要求的圖形,觀察得到軌跡是菱形,并進(jìn)行充分性和必要性兩方面的證明,并求解出軌跡圖形的面積.【詳解】如圖,分別是正方形ABCD,,的中心,下面進(jìn)行證明:菱形EFGC的周界即為動線段PQ的中點(diǎn)H的軌跡,首先證明:如果點(diǎn)H是動線段PQ的中點(diǎn),那么點(diǎn)H必在菱形EFGC的周界上,分兩種情況證明:(1)P,Q分別在某一個定角的兩邊上,不失一般性,設(shè)P從B到C,而Q同時從到C,由于速度相同,所以PQ必平行于,故PQ的中點(diǎn)H必在上;(2)P,Q分別在兩條異面直線上,不失一般性,設(shè)P從A到B,同時Q從到,由于速度相同,則,由于H為PQ的中點(diǎn),連接并延長,交底面ABCD于點(diǎn)T,連接PT,則平面與平面交線是PT,∵∥平面,∴∥PT,∴,而,∥BC,∴是等腰直角三角形,,從而T在AC上,可以證明FH∥AC,GH∥AC,DG∥AC,基于平行線的唯一性,顯然H在DG上,綜合(1)(2)可證明,線段PQ的中點(diǎn)一定在菱形EFGC的周界上;下面證明:如果點(diǎn)H在菱形EFGC的周界上,則點(diǎn)H必定是符合條件的線段的中點(diǎn).也分兩種情況進(jìn)行證明:(1)H在CG或CE上,過點(diǎn)H作PQ∥(或BD),而與BC及(或CD及BC)分別相交于P和Q,由相似的性質(zhì)可得:PH=QH,即H是PQ的中點(diǎn),同時可證:BP=(或BQ=DP),因此P、Q符合題設(shè)條件(2)H在EF或FG上,不失一般性,設(shè)H在FG上,連接并延長,交平面AC于點(diǎn)T,顯然T在AC上,過T作TP∥CB于點(diǎn)P,則TP∥,在平面上,連接PH并延長,交于點(diǎn)Q,在三角形中,G是的中點(diǎn),∥AC,則H是的中點(diǎn),于是,從而有,又因?yàn)門P∥CB,,所以,從而,因此P,Q符合題設(shè)條件.由(1)(2),如果H是菱形EFGC周界上的任一點(diǎn),則H必是符合題設(shè)條件的動線段PQ的中點(diǎn),證畢.因?yàn)樗倪呅螢榱庑?,其中,所以邊長為且,為等邊三角形,,所以面積.故答案為:【點(diǎn)睛】對于立體幾何軌跡問題,要畫出圖形,并要善于觀察,利用所學(xué)的立體幾何方面的知識,大膽猜測,小心驗(yàn)證,對于多種情況的,要畫出相應(yīng)的圖形,注意分類討論.14、【解析】直線與圓有交點(diǎn),則圓心到直線的距離小于或等于半徑.【詳解】直線即,圓的圓心為,半徑為,若直線與圓有交點(diǎn),則,解得,故實(shí)數(shù)取值范圍是.故答案為:15、【解析】設(shè)等差數(shù)列的公差為,由,,等比數(shù)列,可得,則的值可求【詳解】解:設(shè)等差數(shù)列的公差為,,,等比數(shù)列,,則,得,故答案為:16、29【解析】根據(jù)給定信息利用系統(tǒng)抽樣的特征直接計算作答.【詳解】因系統(tǒng)抽樣是等距離抽樣,依題意,相鄰兩個編號相距,所以第四位的編號是.故答案為:29三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的遞增區(qū)間為,遞減區(qū)間為(2)【解析】(1)先求出函數(shù)的導(dǎo)數(shù),令、解出對應(yīng)的解集,結(jié)合定義域即可得到函數(shù)的單調(diào)區(qū)間;(2)將不等式轉(zhuǎn)化為,令,利用導(dǎo)數(shù)討論函數(shù)分別在、時的單調(diào)性,進(jìn)而求出函數(shù)的最值,即可得出答案.【小問1詳解】函數(shù)的定義域?yàn)?,又?dāng)時,,當(dāng)時,故的遞增區(qū)間為,遞減區(qū)間為.【小問2詳解】,即,令,有,,若,在上恒成立.則在上為減函數(shù),所以有若,由,可得,則在上增,所以在上存在使得,與題意不符合綜上所述,.18、(1);(2)點(diǎn)不能為線段的中點(diǎn),理由見解析.【解析】(1)由漸近線夾角求得一個斜率,再代入點(diǎn)的坐標(biāo),然后可解得得雙曲線方程;(2)設(shè)直線方程為(斜率不存在時另說明),與雙曲線方程聯(lián)立,消元后應(yīng)用韋達(dá)定理,結(jié)合中點(diǎn)坐標(biāo)公式求得,然后難驗(yàn)證直線與雙曲線是否相交即可得【詳解】解:(1)由題意知,雙曲線的漸近線的傾斜角為30°或60°,即或當(dāng)時,的標(biāo)準(zhǔn)方程為,代入,無解當(dāng)時,的標(biāo)準(zhǔn)方程為,代入,解得故的標(biāo)準(zhǔn)方程為(2)不能是線段的中點(diǎn)設(shè)交點(diǎn),,當(dāng)直線的斜率不存在時,直線與雙曲線只有一個交點(diǎn),不符合題意.當(dāng)直線的斜率存在時,設(shè)直線方程為,聯(lián)立方程組,整理得,則,由得,將代入判別式,所以滿足題意的直線也不存在所以點(diǎn)不能為線段的中點(diǎn)19、(1)證明見解析;(2)證明見解析.【解析】(1)利用分析法證明即可;(2)將與相乘,展開后利用基本不等式可證明所證不等式成立.【詳解】(1)要證成立,即證,即證,即證,而顯然成立,故成立;(2)已知,,且,則,當(dāng)且僅當(dāng)時,等號成立,故.20、(1);(2)分布列答案見解析,數(shù)學(xué)期望為.【解析】(1)利用正態(tài)密度曲線的對稱性結(jié)合已知條件可求得的值;(2)分析可知,隨機(jī)變量的所有可能取值為、、,計算出隨機(jī)變量在不同取值下的概率,可得出隨機(jī)變量的分布列,進(jìn)一步可求得的值.【小問1詳解】解:已知蘋果的重量(單位:)近似服從正態(tài)分布,由正態(tài)分布的對稱性可知,,所以從蘋果園中隨機(jī)采摘個蘋果,該蘋果的重量在內(nèi)的概率為.【小問2詳解】解:由題意可知,隨機(jī)變量的所有可能取值為、、,,;,所以,隨機(jī)變量的分布列為:所以21、(1),(2)【解析】(1)根據(jù)已知遞推關(guān)系式再寫一式,然后兩式相減,由等差數(shù)列、等比數(shù)列的定義即可求解;(2)根據(jù)已知遞推關(guān)系式再寫一式,然后兩式相減,求出,最后利用錯位相減法即可得答案.【小問1詳解】解:因?yàn)?,,所以,,得,所以是?為首項2為公差的等差數(shù)列,是以1為首項2為公差的等差數(shù)列,所以,,所以;因?yàn)椋?,又由得,所以是?為首項2為公比的等比數(shù)列,所以.【小問2詳解】解:當(dāng)時,,當(dāng)時,,得,即,記,則,,則.22、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘭州資源環(huán)境職業(yè)技術(shù)大學(xué)《液壓流體力學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 濟(jì)寧職業(yè)技術(shù)學(xué)院《傳播效果監(jiān)測》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南幼兒師范高等??茖W(xué)?!督Y(jié)構(gòu)耐久性理論》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南工業(yè)大學(xué)科技學(xué)院《嬰幼兒藝術(shù)發(fā)展與教育》2023-2024學(xué)年第一學(xué)期期末試卷
- 衡陽科技職業(yè)學(xué)院《地理信息系統(tǒng)A》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南交通職業(yè)技術(shù)學(xué)院《生物醫(yī)藥文獻(xiàn)檢索和專業(yè)英語》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江師范大學(xué)《發(fā)酵工程制造技術(shù)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州體育職業(yè)學(xué)院《工業(yè)設(shè)計專業(yè)導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江工貿(mào)職業(yè)技術(shù)學(xué)院《短視頻策劃與運(yùn)營》2023-2024學(xué)年第一學(xué)期期末試卷
- 食品中重金屬殘留的控制手段
- 2024-2025學(xué)年成都高新區(qū)七上數(shù)學(xué)期末考試試卷【含答案】
- 定額〔2025〕1號文-關(guān)于發(fā)布2018版電力建設(shè)工程概預(yù)算定額2024年度價格水平調(diào)整的通知
- 2025年浙江杭州市西湖區(qū)專職社區(qū)招聘85人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 《數(shù)學(xué)廣角-優(yōu)化》說課稿-2024-2025學(xué)年四年級上冊數(shù)學(xué)人教版
- “懂你”(原題+解題+范文+話題+技巧+閱讀類素材)-2025年中考語文一輪復(fù)習(xí)之寫作
- 2025年景觀照明項目可行性分析報告
- 2025年江蘇南京地鐵集團(tuán)招聘筆試參考題庫含答案解析
- 2025年度愛讀書學(xué)長參與的讀書項目投資合同
- 電力系統(tǒng)分析答案(吳俊勇)(已修訂)
- 化學(xué)-河北省金太陽質(zhì)檢聯(lián)盟2024-2025學(xué)年高三上學(xué)期12月第三次聯(lián)考試題和答案
- 期末復(fù)習(xí)試題(試題)-2024-2025學(xué)年四年級上冊數(shù)學(xué) 北師大版
評論
0/150
提交評論