北京豐臺(tái)十二中2025屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
北京豐臺(tái)十二中2025屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
北京豐臺(tái)十二中2025屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
北京豐臺(tái)十二中2025屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
北京豐臺(tái)十二中2025屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

北京豐臺(tái)十二中2025屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在正方體中,分別是線段的中點(diǎn),則點(diǎn)到直線的距離是()A. B.C. D.2.若直線與曲線有公共點(diǎn),則b的取值范圍是()A. B.C. D.3.甲、乙兩名同學(xué)8次考試的成績統(tǒng)計(jì)如圖所示,記甲、乙兩人成績的平均數(shù)分別為,,標(biāo)準(zhǔn)差分別為,,則()A.>,< B.>,>C.<,< D.<,>4.已知數(shù)列滿足且,則()A.是等差數(shù)列 B.是等比數(shù)列C.是等比數(shù)列 D.是等比數(shù)列5.過點(diǎn)A(3,3)且垂直于直線的直線方程為A. B.C. D.6.已知四面體,所有棱長均為2,點(diǎn)E,F(xiàn)分別為棱AB,CD的中點(diǎn),則()A.1 B.2C.-1 D.-27.設(shè)的內(nèi)角的對邊分別為的面積,則()A. B.C. D.8.已知向量,.若,則()A. B.C. D.9.已知點(diǎn)到直線的距離為1,則m的值為()A.或 B.或15C.5或 D.5或1510.已知函數(shù)在處的導(dǎo)數(shù)為,則()A. B.C. D.11.函數(shù)在定義域上是增函數(shù),則實(shí)數(shù)m的取值范圍為()A. B.C. D.12.直線y=x+1與圓x2+y2=1的位置關(guān)系為A.相切B.相交但直線不過圓心C.直線過圓心D.相離二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)是橢圓上一點(diǎn),分別是橢圓的左、右焦點(diǎn),若,則的大小_____.14.已知過點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為A、B,直線經(jīng)過拋物線C的焦點(diǎn)F,則___________15.若平面法向量,直線的方向向量為,則與所成角的大小為___________.16.若,若,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線上的點(diǎn)P(3,c)),到焦點(diǎn)F的距離為6(1)求拋物線C的方程;(2)過點(diǎn)Q(2,1)和焦點(diǎn)F作直線l交拋物線C于A,B兩點(diǎn),求△PAB的面積18.(12分)已知圓:和圓外一點(diǎn),過點(diǎn)作圓的切線,切線長為.(1)求圓的標(biāo)準(zhǔn)方程;(2)若圓:,求證:圓和圓相交,并求出兩圓的公共弦長.19.(12分)在平面直角坐標(biāo)系xOy中,已知橢圓的左、右焦點(diǎn)分別是,,離心率,請?jiān)購南旅鎯蓚€(gè)條件中選擇一個(gè)作為已知條件,完成下面的問題:①橢圓C過點(diǎn);②以點(diǎn)為圓心,3為半徑的圓與以點(diǎn)為圓心,1為半徑的圓相交,且交點(diǎn)在橢圓C上(只能從①②中選擇一個(gè)作為已知)(1)求橢圓C的方程;(2)已知過點(diǎn)的直線l交橢圓C于M,N兩點(diǎn),點(diǎn)N關(guān)于x軸的對稱點(diǎn)為,且,M,三點(diǎn)構(gòu)成一個(gè)三角形,求證:直線過定點(diǎn),并求面積的最大值.20.(12分)已知雙曲線與雙曲線的漸近線相同,且經(jīng)過點(diǎn).(1)求雙曲線的方程;(2)已知雙曲線的左右焦點(diǎn)分別為,直線經(jīng)過,傾斜角為與雙曲線交于兩點(diǎn),求的面積.21.(12分)直線經(jīng)過點(diǎn),且與圓相交與兩點(diǎn),截得的弦長為,求的方程.22.(10分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長是短軸長的2倍且經(jīng)過點(diǎn)M(2,1),平行于OM的直線在y軸上的截距為m,交橢圓于A,B兩個(gè)不同點(diǎn).(Ⅰ)求橢圓的方程;(Ⅱ)求m的取值范圍;(Ⅲ)求證直線MA,MB與x軸始終圍成一個(gè)等腰三角形.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】以為坐標(biāo)原點(diǎn),分別以的方向?yàn)檩S的正方向,建立空間直角坐標(biāo)系,然后,列出計(jì)算公式進(jìn)行求解即可【詳解】如圖,以為坐標(biāo)原點(diǎn),分別以的方向?yàn)檩S的正方向,建立空間直角坐標(biāo)系.因?yàn)?,所以,所以,則點(diǎn)到直線的距離故選:A2、D【解析】將本題轉(zhuǎn)化為直線與半圓的交點(diǎn)問題,數(shù)形結(jié)合,求出的取值范圍【詳解】將曲線的方程化簡為即表示以為圓心,以2為半徑的一個(gè)半圓,如圖所示:當(dāng)直線經(jīng)過時(shí)最大,即,當(dāng)直線與下半圓相切時(shí)最小,由圓心到直線距離等于半徑2,可得:解得(舍去),或結(jié)合圖象可得故選:D.3、A【解析】根據(jù)折線統(tǒng)計(jì)圖,結(jié)合均值、方差的實(shí)際含義判斷、及、的大小.【詳解】由統(tǒng)計(jì)圖知:甲總成績比乙總成績要高,則>,又甲成績的分布比乙均勻,故<.故選:A.4、D【解析】由,化簡得,結(jié)合等比數(shù)列、等差數(shù)列的定義可求解.【詳解】由,可得,所以,又由,,所以是首項(xiàng)為,公比為2的等比數(shù)列,所以,,,,所以不是等差數(shù)列;不等于常數(shù),所以不是等比數(shù)列.故選:D.5、D【解析】過點(diǎn)A(3,3)且垂直于直線的直線斜率為,代入過的點(diǎn)得到.故答案為D.6、D【解析】在四面體中,取定一組基底向量,表示出,,再借助空間向量數(shù)量積計(jì)算作答.【詳解】四面體所有棱長均為2,則向量不共面,兩兩夾角都為,則,因點(diǎn)E,F(xiàn)分別為棱AB,CD的中點(diǎn),則,,,所以.故選:D7、A【解析】利用三角形面積公式、二倍角正弦公式有,再由三角形內(nèi)角的性質(zhì)及余弦定理化簡求即可.【詳解】由,∴,在中,,∴,解得.故選:A.8、A【解析】根據(jù)給定條件利用空間向量平行的坐標(biāo)表示直接計(jì)算作答.【詳解】向量,,因,則,解得,所以,B,D都不正確;,C不正確,A正確.故選:A9、D【解析】利用點(diǎn)到直線距離公式即可得出.【詳解】解:點(diǎn)到直線的距離為1,解得:m=15或5故選:D.10、C【解析】利用導(dǎo)數(shù)的定義即可求出【詳解】故選:C11、A【解析】根據(jù)導(dǎo)數(shù)與單調(diào)性的關(guān)系即可求出【詳解】依題可知,在上恒成立,即在上恒成立,所以故選:A12、B【解析】求出圓心到直線的距離d,與圓的半徑r比較大小即可判斷出直線與圓的位置關(guān)系,同時(shí)判斷圓心是否在直線上,即可得到正確答案解:由圓的方程得到圓心坐標(biāo)(0,0),半徑r=1則圓心(0,0)到直線y=x+1的距離d==<r=1,把(0,0)代入直線方程左右兩邊不相等,得到直線不過圓心所以直線與圓的位置關(guān)系是相交但直線不過圓心故選B考點(diǎn):直線與圓的位置關(guān)系二、填空題:本題共4小題,每小題5分,共20分。13、【解析】,,利用橢圓的定義、結(jié)合余弦定理、已知條件,可得,解得,從而可得結(jié)果【詳解】橢圓,可得,設(shè),,可得,化簡可得:,,故答案為【點(diǎn)睛】本題主要考查橢圓的定義以及余弦定理的應(yīng)用,屬于中檔題.對余弦定理一定要熟記兩種形式:(1);(2),同時(shí)還要熟練掌握運(yùn)用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關(guān)的問題時(shí),還需要記住等特殊角的三角函數(shù)值,以便在解題中直接應(yīng)用.14、64【解析】用字母進(jìn)行一般化研究,先求出切點(diǎn)弦方程,再聯(lián)立化簡,最后代入數(shù)據(jù)計(jì)算【詳解】設(shè),點(diǎn)處的切線方程為聯(lián)立,得由,得即,解得所以點(diǎn)處的切線方程為,整理得同理,點(diǎn)處的切線方程為設(shè)為兩切線的交點(diǎn),則所以在直線上即直線AB的方程為又直線AB經(jīng)過焦點(diǎn)所以,即聯(lián)立得所以所以本題中所以故答案為:64【點(diǎn)睛】結(jié)論點(diǎn)睛:過點(diǎn)作拋物線的兩條切線,切點(diǎn)弦的方程為15、##【解析】設(shè)直線與平面所成角為,則,直接利用直線與平面所成的角的向量計(jì)算公式,即可求出直線與平面所成的角【詳解】解:已知直線的方向向量為,平面的法向量為,設(shè)直線與平面所成角為,則,,,所以直線與平面所成角為.故答案為:.16、2【解析】首先利用二項(xiàng)展開式的通項(xiàng)公式,求,再利用賦值法求系數(shù)的和以及【詳解】展開式的通項(xiàng)為,令,則,即,故,令,得.又,所以故故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)拋物線的焦半徑公式求得,即可得到拋物線方程;(2)寫出直線方程,聯(lián)立拋物線方程,進(jìn)而求得弦長|AB|,再求出點(diǎn)P到直線的距離,即可求得答案.【小問1詳解】由拋物線的焦半徑公式可知:,即得,故拋物線方程為:;【小問2詳解】點(diǎn)Q(2,1)和焦點(diǎn)作直線l,則l方程為,即,聯(lián)立拋物線方程:,整理得,設(shè),則,故,點(diǎn)P(3,c)在拋物線上,則,點(diǎn)P到直線l的距離為,故△PAB的面積為.18、(1)(2)證明見解析,公共弦長為【解析】(1)根據(jù)切線長公式計(jì)算即可得到,然后代入可得圓的方程.(2)聯(lián)立兩圓的方程作差可得直線的方程為,然后利用圓的弦長公式計(jì)算即可.【小問1詳解】圓的標(biāo)準(zhǔn)方程為,所以圓心為,半徑.由勾股定理可得,解得.所以圓的標(biāo)準(zhǔn)方程為.【小問2詳解】由題意得圓的圓心,半徑,圓的圓心,半徑,因?yàn)椋?,所以圓和圓相交.設(shè)兩圓相交于,兩點(diǎn),則兩圓的方程相減得直線的方程為,圓心到直線的距離.所以,所以兩圓的公共弦長為.19、(1)(2)證明見解析,【解析】(1)若選①,則由題意可得,解方程組求出,從而可求得橢圓方程,若選②,,再結(jié)合離心率和求出,從而可求得橢圓方程,(2)由題意設(shè)直線MN的方程為,設(shè),,,將直線方程代入橢圓方程中,消去,再利用根與系數(shù)的關(guān)系,表示出直線的方程,令,求出,結(jié)合前面的式子化簡可得線過的定點(diǎn),表示出的面積,利用基本不等式可求得其最大值【小問1詳解】若選①:由題意知,∴.所以橢圓C的方程為.若選②:設(shè)圓與圓相交于點(diǎn)Q.由題意知:.又因?yàn)辄c(diǎn)Q在橢圓上,所以,∴.又因?yàn)?,∴,?所以橢圓C的方程為.【小問2詳解】由題易知直線MN斜率存在且不為0,因?yàn)?,故設(shè)直線MN方程為,設(shè),,,∴,∴,,因?yàn)辄c(diǎn)N關(guān)于x軸對稱點(diǎn)為,所以,所以直線方程為,令,∴.又,∴.所以直線過定點(diǎn),∴.當(dāng)且僅當(dāng),即時(shí),取等號(hào).所以面積的最大值為.20、(1);(2).【解析】(1)由兩條雙曲線有共同漸近線,可令雙曲線方程為,求出即可得雙曲線的方程;(2)根據(jù)已知有直線為,由其與雙曲線的位置關(guān)系,結(jié)合弦長公式、點(diǎn)線距離公式及三角形面積公式求的面積.【詳解】(1)設(shè)所求雙曲線方程為,代入點(diǎn)得:,即,∴雙曲線方程為,即.(2)由(1)知:,即直線方程為.設(shè),聯(lián)立得,滿足且,,由弦長公式得,點(diǎn)到直線的距離.所以【點(diǎn)睛】本題考查了雙曲線,根據(jù)雙曲線共漸近線求雙曲線方程,由直線與雙曲線的相交位置關(guān)系求原點(diǎn)與交點(diǎn)構(gòu)成三角形的面積,綜合應(yīng)用了弦長公式、點(diǎn)線距離公式、三角形面積公式,屬于基礎(chǔ)題.21、或【解析】直線截圓得的弦長為,結(jié)合圓的半徑為5,利用勾股定理可得圓心到直線的距離,再利用點(diǎn)到直線的距離公式列方程求出直線斜率,由點(diǎn)斜式可得結(jié)果.【詳解】設(shè)直線的方程為,即,因?yàn)閳A的半徑為5,截得的弦長為所以圓心到直線的距離,即或,∴所求直線的方程為或.【點(diǎn)睛】本題主要考查點(diǎn)到直線距離公式以及圓的弦長的求法,求圓的弦長有兩種方法:一是利用弦長公式,結(jié)合韋達(dá)定理求解;二是利用半弦長,弦心距,圓半徑構(gòu)成直角三角形,利用勾股定理求解.22、(Ⅰ);(Ⅱ)且;(Ⅲ)證明見解析.【解析】(Ⅰ)設(shè)出橢圓方程,根據(jù)題意得出關(guān)于的方程組,從而求得橢圓的方程;(Ⅱ)根據(jù)題意設(shè)出直線方程,并與橢圓方程聯(lián)立消元,根據(jù)直線與橢圓方程有兩個(gè)不同交

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論