版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
HongKongHydrogenEconomyStudyandReport
MarketStudyontheUseofHydrogeninGreenTransportationinHongKong
September2023
1
A.ExecutiveSummary
InthelatestPolicyAddress,theGovernmentiscommittedtoreducingcarbonemissions,includingexploringdifferenttypesofzero-carbonenergyanddecarbonisationtechnologies,tostrivetowardcarbonneutrality.Hydrogenisoneofthepotentialsourcesofenergycarrierwhichhasversatilitytosubstitutefossilfuelinvariousutilizationscenarios.TheCleanAirPlanforHongKong2035(releasedinJune2021)clearlyidentifiessixmajorareasforfurtheraction,whichincludegreentransport,liveableenvironment,comprehensivereduction,cleanenergy,scientificmanagement,andregionalcollaboration.
Hydrogencantypicallyplayaroleincontributingtoaresilient,sustainableenergyfutureintwomajordirections:(1)current/traditionalpracticeofhydrogenusage,dominantlypresentinindustrialactivities(e.g.refinery,steelproduction,fertilizermanufacturingetc.),canusehydrogenproducedfromgreeneralternativemethods;(2)hydrogenreceivesinterestinnewandemergingapplicationsmainlyinelectricitygeneration,heatingsourceandtransportation(i.e.fuelcellvehicleFCV).InHongKong’scontext,hydrogenusageinthe(2)findsitsultimaterelevance.Hydrogencanbedirectlyusedinitspureformstoredindifferentphysicalstates(includinguncompressedgas,compressedgas,liquefiedhydrogenandsolid-statehydrogenasmetalhydride).Alternatively,hydrogencanbeconvertedtohydrogen-basedfuelssuchasammonia,methaneorliquidalcoholfuels.Withthesemultiplefacetsofhydrogen,thereispotentialtoconnectdifferentpartsoftheenergysystemwithhydrogen-derivedfuels.
Disregardingtherawsourcesofhydrogen,HongKonghasanobviousadvantageoverothercitiesintheworldinthatthehydrogenmixturedistributionnetworkisreadilyavailablethroughoutHongKong.ThesignificantportionofhydrogenintheutilitygasmixturewithitsextensivenetworkaccessibilityisrenderingHongKongconvenientinextractingpurehydrogenforitsdedicatedusageatthedesirablesites.Theexistinginfrastructurescapableofhandlinghydrogen-blendedmixturealsoofferthepotentialofcosteffectivenessinfurtherdevelopingtheapplicationofpurehydrogenfortransportationpurpose.Promotinghydrogen-fuelledvehicles,inadditiontobattery-poweredelectriccounterparts,inHongKongwillhelptodecarbonisethetransportationsector.Bothmodesofgreentransport(hydrogenandbattery-powered)havecomplementaryrolesinsatisfyingvehicleswithdifferentenergydemands.EnactmentofpoliciesandregulationsonhydrogenutilizationwouldbethenextmajoreffortinfacilitatingtherealadoptionofhydrogeninHongKong.
2
B.MarketAnalysisontheUseofHydrogeninHongKongHongKong’sPotentials
Thereleaseofthe“CleanAirPlanforHongKong2035”inJune2021islikelytomarka
turningpointformanysectors.AsHongKonglookstocreateamoresustainablesocietywithhealthylivingthroughlow-carbontransformation,itwillbecomeincreasinglyfocusedonlow-carbonenergy,includinghydrogen.WithinthesixmajorareascoveredintheCleanAirPlanforHongKong2035,thereareatleastthreemajorareasthatcanseethepotentialrapidgrowthofhydrogen,includingtheareasforgreentransport,comprehensiveemissionsreductionandcleanenergy.
Hydrogenhasbeenusedinawiderangeofapplicationsformanydecades.Itisanimportantreagentinoilrefining,steelmaking,fertilizerproduction,andmanufacturingofplastics,fabricsanddyes.ThesetraditionalusagesofhydrogenarerelativelydistanttothecontextofHongKongbecauseoftheirtrivialpresenceinthoseindustries.However,asatoolinrealizingdecarbonisation,hydrogenmayhavearoletoplayintransportationandpowergeneration,andalsoasameansofenergystorage.ItremainsrelativelyinfancyinHongKongbuttherearepromisingsignsofbuildingmomentumforthedeploymentofhydrogeninthebelowareas.
Greentransportation.AselaboratedintheCleanAirPlanforHongKong2035,greentransportationhasbeenidentifiedasamajorareaandhydrogendeploymenthasthereforeseenthepotentialroomalbeitstillinitsinitialphases.InAsia-Pacific,abroadrangeofcommitmentsacrossthegovernmentandprivatesectorstosupporttheintroductionofhydrogeninthetransportationsectorisobservedasthissectorisamajoremissionscontributor.Whilebatteryelectricvehiclesarethecurrentpreferredoptionforsmallvehiclestravellingthroughshorterdistances,hydrogenhasbeenconsideredamoresuitablecandidateforheavyvehicletransportationowingtoitsmuchlargerenergydensityascomparedwithbattery.Thismayrepresentasub-sectorwithingreentransportationtofacilitatepreferentialgrowthofhydrogenfuel-cellvehicles(FCV)forheavydutytransportationsuchasbuses,domestictrailersandcross-bordertrucksforlogisticservices.Japan,ChinaandSouthKoreahaveexpressedobjectivesandtargetstoincreasetheusageofhydrogenFCVs.AccordingtoJapan’sBasicHydrogenStrategy,theyhavesetatotalnumberof200,000FCVsby2025and800,000FCVsby2030.Thenumbersareinclusiveofvehiclesofallcategories.Japanisconstructing320hydrogenstationsby2025.Hence,therewouldbemorereferencesof
3
deployedhydrogenstationsfromJapanthatcouldbeofvaluabletoHongKong’spathwaytowardshydrogen.ToenablegreentransportationbyhydrogeninHongKong,hydrogengasstationmustbethefoundationforthepromotionofhydrogenFCVs.StrategicallocationfortheinitialinstallationofhydrogenstationismostlikelytobeoutskirtofHongKongtoavoidpopulatedarea.Theconstructionofahydrogengasstationontheoutskirtsmayalsobeapreferredoptionforheavydutyvehicleoperatorsowingtothenatureoftheirroutinerouteoperation.Besidesroadtransportation,thereisalsopotentialforitsuseasamarinefuelinHongKong’scontext.Domesticferriesandintermediate-distanceferriescouldbethepotentialusersofhydrogenbecausetheelectrificationofferriesbybatterytechnologiesappearstobeinadequate.TheInternationalMaritimeOrganization’snewbunkerfuelregulationshavesetthelimitsofSulphurcontentofmarinefuelsto0.5%from1January2020.Althoughthishasnodirecttranslationintotheuseofhydrogen,thereareafewcommitmentsannouncedbythemarineprivatesectortoexploretheuseofhydrogenasfuelfortheinternational/inter-continentalshippingindustries.Asoneofthebusiestportsintheworld,HongKongmaybeimpactedbythelatestrapidadoptionofgreentechnologies.
Powerandheatingsector.HongKongiscurrentlyunderwaytoreplacecoalwithnaturalgasinpowergeneration.Ithasseenagreatandcontinuingreductionofgreenhousegasemissionsfromthepowerutilitiescompanies(i.e.CLP,HKElectricandTowngas).TheconstructionoftheoffshorenaturalgasterminalisanotherimportantmilestoneforHongKonginachievingthefurtherreplacementofcoalbynaturalgasinthepowergenerationsector.Inordertoachievenetzeroemissionafterobsoletingcoal-firing,naturalgascouldalsobegraduallyandeventuallyreplaced(toacertainextent)byhydrogen.HydrogeninjectionintotheexistingpipelineisalreadypartofthenationalhydrogenstrategyforafewcountriesincludingtheUK,Australia,JapanandSouthKorea.HongKong-basedcompanyhasbeeninvolvedintheseinitiativesandcouldbeanimportantcontributorinadoptingthestrategyinHongKong.Initialplansaretheblendingofhydrogeninalowmixturepercentagewithnaturalgasforinjectiontoavoidmajormodificationstopipelinenetworks.Higherconcentrationsmayrequirenetworkmodificationssuchasthereplacementofsteelwithcompositepipesorthereplacementofcompressors.Otherthanpipelinesfortransportinghydrogen,thereisalsothedevelopmentofmoreadvancedgasturbinescapableofacceptingfuelblendswhichmaycontain50%ormorehydrogen.Majorturbinemanufacturersaredevelopinggasturbinesthatcouldrunon100%hydrogen.Althoughthereisalongwaybeforehydrogenmightfullyreplacenaturalgasforelectricitygeneration,andthepredictedtimelineforsuchtransitionhasuncertainfactors,itisaverysignificantstepawayfromfossilfuelstowardsalow(orzero)carboneconomy.
4
Incontrast,utilitygasmixtureinHongKonghasseentheadoptionofhighcontenthydrogen(upto51%ofthemixture)fordecades.TheextensiveaccessibilityofutilitygaspipelinethroughoutentireHongKongisanobviousadvantageinfurtherextendingitsusage,includingextractingpurehydrogenforhydrogenfuelstations.Notethatthehydrogenintheexistingutilitygasisnotproducedfromthecleansourceatthecurrentstage.
Short-termenergystorage.Hydrogencancouplewithrenewableenergy(solarandwind)toaddressthedrawbacksofrelianceonrenewableenergy.Energygeneratedbywindorsolarpowerplantscanbestoredandtransportedfromregionswithhigherproduction(e.g.offshoreforwindfarm,ruralareaforsolarPVfarm)toareaswithhigherdemand.Otherwise,itcanbesimplystoredduringlow-consumptionperiodsuntilthereisapeakinenergydemand.Certainly,theproductionofhydrogenandsubsequentlyre-conversiontoelectricitywillcarryanadditionalcostandinvolvesenergylosses.However,thecontinuingfallingcostofrenewableenergycanstillenhancetheviabilityofhydrogenasthestoragemediuminalongterm,seasonalandtransportablemanner.Thismaynotbethemostidealsituationinlongtermbutitisimportantintheearlydaysfordevelopingtheutilizationofhydrogen.HongKonghasanumberoflarge-scaledeploymentsofwindfarmsandfloatingphotovoltaic(PV)systems.Theuseofelectricityfromtheserenewablefacilitiesmayfindanopportunityinthemediumofhydrogenbecausethedirectusageofelectricityfromwindfarms/floatingPVgenerationsitesmaynotbeconvenientlyfeasibleinthenearterm.
RecentdevelopmentinHongKong
HongKongismakingeffortstokeepupwithotherOECDcountriesinhydrogen-relateddevelopmentandinitiativeisbeginningtobeputinplace(forexample,themuchanticipatedGreenTechnologyFundGTF).HongKongGovernmenthassetuptheGTFin2021toprovidebetterandmorefocusedfundingsupportforresearchanddevelopment(R&D)projectswhichcanhelpHongKongdecarboniseandenhanceenvironmentalprotectionasHongKongstrivestowardsitsgoalofcarbonneutralitybefore2050.TheGTFisconsideringallcategoriesofgreentechnologies.However,thefundingoutcomehassuggestedthevisionoftheHongKongGovernmentinpro-actively
exploringthesuitablewayoftheCity’sownhydrogendevelopmentalplan.Outofthe14approved
projectsoutofover190applicationsinthefirstroundoffunding,fourprojectscentredonhydrogentechnologieshavebeenapprovedatmultimillionHongKongdollarscale.
5
Thefourhydrogen-focusedprojectsledbyHongKonglocaluniversitiescoverthescopeofgreenhydrogenproduction,hydrogenstorage,andhydrogenapplications.Inthespaceofgreenhydrogenproduction,twoprojectsusingnewphotocatalytictechnologyandmembrane-lesselectrolysershavebeenselectedforfurtherdevelopment.Bothprojectsaimtoutilisewaterasthehydrogensource.Anotherprojectwasapprovedtodevelopsolid-statehydrogenstorageasapotentialwayintacklingthestorageissueofhydrogen,whilealong-lifehydrogenfuelcellprojectsecuredanotherslotinthefirstroundoftheGTFcall.
HongKong’sClimateActionPlan2050releasedinOctober2021hasincludedgreenhydrogenenergyinitsmedium-termdecarbonisationtargets.Itisalsomentionedthattheuncertaintyofthetechnologywilldependonitsmaturity,reliabilityandcost-effectivenessforlarge-scaleapplications.Besidetheadoptionofelectricvehicles(generallyreferredtobatteries-poweredelectricvehicle),manyautomobileplayersaredevelopinghydrogen-powervehicles(suchasheavy-dutytype)andHongKongiscollaboratingwithfranchisedbuscompaniesinthenextthreeyears(2022-2024)totestouthydrogenfuelcellelectricbusesandheavyvehicles.GuangdongProvincehasestablishedhydrogenproductionfacilitiesthatmightprovidehydrogensupplytoHongKong.Hence,feasibilitystudiesonhydrogen-fuelledtransportandconstructionofhydrogen-fillingfacilitiesareorsoonwillbeunderway.FollowingthereleaseoftheCleanAirPlan,theGovernmenthassetupanInterdepartmentalWorkingGroupontheapplicationofhydrogenenergyinHongKong.CityUniversityofHongKong(SchoolofEnergyandEnvironment)hasbeenworkingwiththeWorkingGroupinthisinitiativeanddeliveredatrainingmoduletotheinterdepartmentalpersonnelonhydrogenproductiontechnologies.
BesidetheGovernment’sinitiatives,HongKongutilitiescompanieshavelaunchedhydrogen-focuseddevelopmentplans.CLPhaskick-startedcollaborationwithGEtojointlydevelopadecarbonisationroadmapforCLP’sgas-firedpowergenerationfacilitiesinHongKong.CLPandGEexplorethefeasibilityofburningavariableblendofnaturalgasandhydrogenuptoapossible100%hydrogen,toreducecarbonemissionsattheBlackPointpowerplant.HongKongandChinaGas(Towngas)isdevelopingthecapacitytoproducezero-carbonhydrogenaspartofitslong-termdecarbonisationplan.Towngashasbeenconductingpilotprogrammesonhydrogenutilisationandequipmentinstallationsforthepastyears.
6
HongKong’slimitation
Despitethepromisingaspectsofhydrogen,therearemajorchallengesforwidespreaduseinworldwide,includinginHongKong.Ingeneral,hydrogenisusedatlargescaleinmanyindustries(e.g.steelmaking,oilrefining,fertilizerproducingetc.).Decarbonizingindustrialsectorsthroughgreenhydrogenisanindispensablestrategyinmanyindustrializednationsasthecarbonemissionfromtheindustrialsectorissignificant.TheutilizationofhydrogeninindustriesinHongKongisbasicallyrare.Instead,aselaboratedearlier,hydrogenfindspotentialinnewapplicationssuchasgreentransportationandcleanenergy.BelowaresomeofthechallengesencounteredinHongKongandhowtheymightbeovercome.
Greenhydrogenisexpensive.Asofnow,theproductioncostofblueorgreenhydrogenremainsmuchhigherthanthatoffossilfuels.Currently,thecostofproductionofgreenhydrogenisestimatedtobeUSD$2.50-6.80perkgH2whilebluehydrogenisestimatedtobeUSD$1.40-2.40perkgH2.Forgreenhydrogentobecomecommerciallycompetitive,ithasbeensaidthattheproductioncostneedstobeloweredtoorlowerthanUSD$2perkgH2.ThereareprojectionstoseethepriceofgreenhydrogenfallbelowUSD$2perkgbeforetheendofthisdecade.Themaindriversforloweringthegreenhydrogenproductioncostarethefallingcostofrenewableelectricity(especiallylarge-scalesolarPV)andthepriceofelectrolysisfacilities(benefitsofscale-upmanufacturing).Thetrendisexpectedtocontinue.ThecostofCCSwillneedtobereducedanditsefficiencyneedstobeimproved.Onecriticalfactoroftenoverlookedorignoredistheaccesstoawatersourceforelectrolysis.Thecurrentelectrolysertechnologies,aselaboratedintheabovesections,arerelyingoneitheralkalinewaterorclean(deionized-grade)waterforoperation.Whilethewaterresourcemaynotbeanimmediateproblem,theprovisionoftreatedcleanwaterfortheoperationofelectrolysismightposealong-termchallenge,especiallywhenitisproducedatamegawattscale.
Thoughgreenhydrogenisexpensive,thereareexamplesofincreasinggovernmentsupportfortheuptakeandusageofhydrogen.Governmentsupportisintheformof(1)financialsubsidiesandinvestmenttomakehydrogenmoreeconomical,and(2)carbontaxesoremissionstradingschemestoincreasethecostoffossilfuels.China,Japan,andSouthKoreahavealreadyimplementedemissionstradingschemesindifferentforms.Thisiscritical,especiallyduringtheinitialdeploymentphasesofnewgreentechnologies,includinghydrogen.Hydrogensubsidyschemesmaybecoordinatedwithotherenvironmentalincentiveschemes.
7
Transportationofhydrogen.Ifhydrogenisnotproducedlocally,thetransportationofhydrogencancompriseasignificantcomponentofthefinalcostofhydrogen.Forshorterdistances(forexample,fromGreaterBayAreatoHongKong),hydrogenmightbetransferredbygroundtransportorupgradedpipelines.Forlongdistancetransportation(e.g.fromAustraliaorChiletoHongKong),themostrealisticoptionatthemomentwouldbeliquefiedhydrogen.Ammoniaasthehydrogen-carrierhasalsobeenseriouslyconsideredanoptionbyJapanandAustralia.Thereareenergylossesincurredduringtheconversionofhydrogen-nitrogenintoammoniaattheexportersite;therearealsoenergylossesduringthere-conversionofammoniabacktohydrogen.However,itmaystilloffercostbenefitswhencomparedwiththepriceassociatedwithliquefyinghydrogenatextremelylowtemperatureforultra-longdistancetransportation(suchasfromAustraliatoJapan).InHongKong,itmightbeidealtoproducehydrogenon-siteatoutskirtfacilitiesthroughwaterelectrolysis.Transportationneedscouldberemovedifthegenerationsitesaretheutilizationpoint.TransportationthroughpipelinesfromGBAmightbeanotheroptionpriortoconsideringofinter-continentaltransportationofhydrogenthroughshipment.ThevariationinstandardsadoptedintheGBAandHongKongshouldbesorted.
Lackingofdistributioninfrastructure.WidespreaddeploymentofpurehydrogenwithinHongKongwillrequireextensiveinvestmentinthedistributioninfrastructure.Ingeneral,existingpipelineinfrastructurewillneedtoberetrofittedtoaccepttheinjectionofmoreconcentratedorpurehydrogen.Morecritically,forthepromotionofgreentransportationthroughhydrogenFCV,thereisnorefuellinginfrastructureinHongKong.Tostartwith,FCVscostconsiderablymorethancarswithcombustionengines.Withouttheprovisionofeasilyaccessiblehydrogenrefuellingstations,itisunlikelythattherewillbeanuptakeordemandforhydrogenFCVs.Thedilemmaencounteredisthatpartiesmaynotinvestininfrastructureunlessthereisademand,butdemandwillnotmaterializewithouttheinfrastructure.Thedrivetowardshydrogeninfrastructureinvestmentmayseearoleforthegovernmenttoprovidefinancialandpolicysupport.
Theneedsforclearandcomprehensiveregulatoryframework.Operational,environmental,safety,andtechnicalstandardsneedtobeimplementedinordertoensureconsistentstandardsforutilization,transportation,andstorageofhydrogen.InHongKong’scontext,ifhydrogenissourcedfromMainlandChina,thecross-bordertransportationofhydrogenisstillinitsinfancy.Clearregulationspertainingtotransportationcan,inturn,promotethegrowthanddevelopmentofhydrogenprojects.Thereareexamplesofcountriesthathaverolledoutinitiallawsonhydrogenusageand
8
domesticsafetystandards.Forexample,SouthKoreahaspassedtheHydrogenEconomyPromotionandHydrogenSafetyManagementLaw.However,substantialfurtherworkisstillinprogresstodevelopdetailedrulesandregulations.Internationalandcross-borderregulationsofhydrogentradeandtransportationarealsointheearlystages.
C.AnalysisoftheSupplyChainofHydrogen
C1.HydrogenProductionGreenHydrogenTrend
Althoughgreenhydrogenhasbeenvigorouslydiscussedandconsensuallyagreedasoneoftheeffectivesolutionsinaddressingdecarbonisationstrategyworldwide,99%ofthe~70millionmetrictonnes(Mt)isstillproducedfromthesteamreformingofnaturalgas(71%)andthegasificationof
coalandoil(27%),asshownin
Figure1.
Theproductionofthis70Mtofhydrogenwasaccompanied
bythereleaseof830MtofCO2.Itisclearthattheuseofhydrogenproducedfromcarbonintensivesourceshaslittlerelevancetodecarbonisation.ThishydrogeniscategorizedasgreyhydrogeninwhichtheCO2emissionisunsustainablyhighrelativetoitsusage.Greyhydrogenisthedominantandtraditionalsourceusedinrefineries,ammoniaandmethanolproduction.Ammoniaistheimportantrawmaterialforfertilizerproductionwhichsupportstheagriculturalactivities(e.g.foodcrops)whilemethanolisusedinplasticproductionandfueladditive.
Figure1Hydrogenproductionmethodsusedin2018.Source:IEATheFutureofHydrogen.
9
Thescenarioisexpectedtochangeinwhichlow-carbonhydrogenwillbethedominantsourceofhydrogenwhilegreyhydrogenwillbecompletelyphasedoutby2050,mainlydrivenbythefallingpriceofgreenhydrogenenabledbytechnology.Figure2showsthattheprojected500-800Mtofhydrogenproducedin2050willcomprisegreen(85%)andblue(15%)hydrogen.Bluehydrogenisessentiallyanupgradedversionofgreyhydrogenequippedwithcarboncaptureandstorage(CCS)technology.Bluehydrogenisconsideredanintermediatestagebeforethefulltransitionfromgreytogreeninhydrogenproduction.Ideally,existinggreyhydrogenproductionfacilitiescanberetrofittedwithCCSandbecomeanoptionfortheexistinghydrogenstakeholderstoachievelowergreenhousegas(GHG)emissions.Thisallowsforthepromotionofhydrogenmarketgrowth.Inprinciple,atheoretical85-95%ofcarbonemissionsfromtraditionalgreyhydrogencanbecapturedbytheinstallationofCCS.Existingindustrieslikeammoniaplantsandsteelproductioncouldusebluehydrogenasaninitialsolutionbeforethematurationofgreenhydrogentechnologies.
Figure2Multiple-foldincreaseincleanhydrogenproductionby2050.Source:ETC(2021)MakingtheHydrogenEconomyPossible.
However,fiercedebatescontinuetotakeplaceonthefeasibilityoftheCCSapproach(bluehydrogen).AsCCSisgenerallyregardedasanintermediatestageorshort-termsolution,bluehydrogenencountersafewmajorchallengesincludingthedoubtscastonitsbestcaptureefficienciestoreach85-95%.Theremaining5-15%oftheCO2willstillbeemittedandthescaleisstillmassive.Furthermore,thesehighcaptureefficiencieshaveyettobeachieved.Moreover,additionalcosts
10
associatedwithretrofittingexistingfacilitiestoincludeCO2transport,storageandmonitoringalso
faceacceptanceissues.Thestoredcarbonwouldneedlongtermmonitoringmechanismwhiletheriskofleakagescontinuestobealiability.
Asreportedbymanyinternationalsurveys,greenhydrogenisproducedfromwaterelectrolysispoweredbyrenewableenergy/electricity.Commonlyadoptedscenariointhosemajorreports(suchasIEA,ETC,ARENA,IRENA)includestheuseofsolarphotovoltaicandwindturbinetodrivevarioustypesofelectrolysersthatsplitwaterintohydrogenandoxygen.Thehydrogenproductioncostprojectionismainlybasedontheabove-mentionedtechnologies.Othernon-electrolysisrenewable-basedsolutionsdoexistandhavebeendiscussedwidelybutnotamainstreampractisewhenitcomestocostprojection.Theseoptionsincludebiomasspyrolysis,thermochemicalwatersplitting,photocatalysisandanaerobicdigestionofbiomass.Greenhydrogenistherefore,inmanycases,solelyreferringtorenewable-poweredwaterelectrolysis.Renewableenergy,withparticularinterestinsolarphotovoltaictechnology,showsdecreasingcostsaccompaniedwithimprovementinefficiency,whichbringspossibilitiestolowcostgreenhydrogen.Thepresenceofmatureelectrolyser(alkalineelectrolysers)andemergingnewtypeofelectrolyser(polymerelectrolytemembrane(PEM)electrolysers)areanotherfactorinstrengtheningtheimpressionofgreenhydrogenbeingderivedfromrenewable-poweredelectrolysisofwater.Hence,inthisstudytheevaluationofgreenhydrogeniscloselyassociatedwiththistechnology.
HydrogenGeneration
Hydrogenproductioncanbegroupedintothreeprimarypathways,namely
(a)Thermochemicalpathway(b)Electrochemicalpathway(c)Emergingpathway
Existingortraditionaldedicatedhydrogenproductionmethodsaremostlyfromthecategoryofthermochemicalapproach.Itis,however,unfairtoperceivethermochemicalpathwayastheuncleanhydrogenproductionmethod.Theexistingthermochemicalapproachisacarbonintensiveprocessonlybecauseoftheuseoffossilfuelasthehydrogensource.
11
Thermochemicalapproach
Thethermochemicalmethodisaprocessinvolvingtheuseofheattointeractwithprecursors.Theuseoffossilfuelasthehydrogensourcedominatesthethermochemicalapproach.Hydrocarbons,coal,naturalgasandthebiomassarecommoncarbon-basedfuelsreferredintheabove.Inthefirststageofthermochemicalapproach,syngasmadeofhydrogenandCO/CO2mixturesareproduced.Thesyngasissubsequentlysubjectedtothemature“water-gasshiftreaction”toconcentratetheamountofCO2andhydrogen.Conventionally,CO2isproducedastheby-productwithoutbeingpairedwithCCS.
Figure3
showsthematureandtraditionalthermochemicalhydrogenproductiontechnologies.Steammethanereforming(SMR)isthemostwidelyusedmethodforhydrogenproductionfollowedbythecoalgasification.ThepercentageofSMRandcoalgasificationvariedfromcountrytocountrybutpersistentlybothofthemarethemostusedmaturetechnologies.Hydrogenproducedfromtheseapproachesrequiresfurtherpurificationsuchaspressureswingadsorption(PSA)andgasseparationmembrane.TowngasinHongKongisadoptingPSAintheirproduction.Withcurrentpurificationmethods,hydrogenpuritylevelsof99.9999%canbeobtained.
Process
Description
Dis/Advantages
SteamMethane
Reforming(SMR)
Lighthydrocarbons,suchasnaturalgasorbiomethane(upgradedbiogas),aremixedwithsteaminthepresenceofacatalystathightemperature(~750oC)andmoderatepressuretoproducesyngas.SMRonitsownusesapproximately4.5LofwaterperkgH2.
+Establishedtechnology
?Requirespurif
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 銀行工作總結(jié)勇攀高峰無往不勝
- 金融行業(yè)管理顧問工作心得
- 互聯(lián)網(wǎng)金融行業(yè)銷售工作總結(jié)
- 體驗式餐廳設(shè)計師的文化體驗與美食創(chuàng)新
- 家居用品采購心得體會
- 骨科護士長的工作總結(jié)
- 《消化道常見癥狀》課件
- 《健康食品排行榜》課件
- 2021年河北省張家口市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2022年四川省自貢市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 德邦物流人力資源管理規(guī)劃項目診療
- 基于西門子S7-200型PLC的消防給水泵控制系統(tǒng)設(shè)計
- 儀器設(shè)備采購流程圖
- 盈利能力分析外文翻譯
- 不合格醫(yī)療器械報損清單
- 高中物理全套培優(yōu)講義
- 新一代反洗錢監(jiān)測分析系統(tǒng)操作手冊all
- 礦山環(huán)境保護ppt課件(完整版)
- 檔案保護技術(shù)概論期末復(fù)習資料教材
- (高清版)外墻外保溫工程技術(shù)標準JGJ144-2019
- 聚氨酯基礎(chǔ)知識
評論
0/150
提交評論