版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆上海外國語大學附中高考數(shù)學四模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.據(jù)國家統(tǒng)計局發(fā)布的數(shù)據(jù),2019年11月全國CPI(居民消費價格指數(shù)),同比上漲4.5%,CPI上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響CPI上漲3.27個百分點.下圖是2019年11月CPI一籃子商品權重,根據(jù)該圖,下列結論錯誤的是()A.CPI一籃子商品中所占權重最大的是居住B.CPI一籃子商品中吃穿住所占權重超過50%C.豬肉在CPI一籃子商品中所占權重約為2.5%D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為0.18%2.已知函數(shù)是奇函數(shù),則的值為()A.-10 B.-9 C.-7 D.13.關于函數(shù),有下述三個結論:①函數(shù)的一個周期為;②函數(shù)在上單調遞增;③函數(shù)的值域為.其中所有正確結論的編號是()A.①② B.② C.②③ D.③4.一個正四棱錐形骨架的底邊邊長為,高為,有一個球的表面與這個正四棱錐的每個邊都相切,則該球的表面積為()A. B. C. D.5.設為等差數(shù)列的前項和,若,,則的最小值為()A. B. C. D.6.設為虛數(shù)單位,則復數(shù)在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.記的最大值和最小值分別為和.若平面向量、、,滿足,則()A. B.C. D.8.若復數(shù)()是純虛數(shù),則復數(shù)在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.數(shù)列滿足,且,,則()A. B.9 C. D.710.“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分又不必要條件11.過拋物線的焦點的直線與拋物線交于、兩點,且,拋物線的準線與軸交于,的面積為,則()A. B. C. D.12.已知為一條直線,為兩個不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本題共4小題,每小題5分,共20分。13.若,則______.14.設是公差不為0的等差數(shù)列的前項和,且,則______.15.在的展開式中,常數(shù)項為________.(用數(shù)字作答)16.某部隊在訓練之余,由同一場地訓練的甲?乙?丙三隊各出三人,組成小方陣開展游戲,則來自同一隊的戰(zhàn)士既不在同一行,也不在同一列的概率為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知橢圓的右焦點為,,為橢圓上的兩個動點,周長的最大值為8.(Ⅰ)求橢圓的標準方程;(Ⅱ)直線經(jīng)過,交橢圓于點,,直線與直線的傾斜角互補,且交橢圓于點,,,求證:直線與直線的交點在定直線上.18.(12分)某機構組織的家庭教育活動上有一個游戲,每次由一個小孩與其一位家長參與,測試家長對小孩飲食習慣的了解程度.在每一輪游戲中,主持人給出A,B,C,D四種食物,要求小孩根據(jù)自己的喜愛程度對其排序,然后由家長猜測小孩的排序結果.設小孩對四種食物排除的序號依次為xAxBxCxD,家長猜測的序號依次為yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四個數(shù)字的一種排列.定義隨機變量X=(xA﹣yA)2+(xB﹣yB)2+(xC﹣yC)2+(xD﹣yD)2,用X來衡量家長對小孩飲食習慣的了解程度.(1)若參與游戲的家長對小孩的飲食習慣完全不了解.(ⅰ)求他們在一輪游戲中,對四種食物排出的序號完全不同的概率;(ⅱ)求X的分布列(簡要說明方法,不用寫出詳細計算過程);(2)若有一組小孩和家長進行來三輪游戲,三輪的結果都滿足X<4,請判斷這位家長對小孩飲食習慣是否了解,說明理由.19.(12分)如圖,點為圓:上一動點,過點分別作軸,軸的垂線,垂足分別為,,連接延長至點,使得,點的軌跡記為曲線.(1)求曲線的方程;(2)若點,分別位于軸與軸的正半軸上,直線與曲線相交于,兩點,且,試問在曲線上是否存在點,使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說明理由.20.(12分)設函數(shù)f(x)=sin(2x-π(I)求f(x)的最小正周期;(II)若α∈(π6,π)且f(21.(12分)如圖,點是以為直徑的圓上異于、的一點,直角梯形所在平面與圓所在平面垂直,且,.(1)證明:平面;(2)求點到平面的距離.22.(10分)已知數(shù)列,滿足.(1)求數(shù)列,的通項公式;(2)分別求數(shù)列,的前項和,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
A.從第一個圖觀察居住占23%,與其他比較即可.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,再判斷.C.食品占19.9%,再看第二個圖,分清2.5%是在CPI一籃子商品中,還是在食品中即可.D.易知豬肉與其他畜肉在CPI一籃子商品中所占權重約為2.1%+2.5%=4.6%.【詳解】A.CPI一籃子商品中居住占23%,所占權重最大的,故正確.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,權重超過50%,故正確.C.食品占中19.9%,分解后后可知豬肉是占在CPI一籃子商品中所占權重約為2.5%,故正確.D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為2.1%+2.5%=4.6%,故錯誤.故選:D【點睛】本題主要考查統(tǒng)計圖的識別與應用,還考查了理解辨析的能力,屬于基礎題.2、B【解析】
根據(jù)分段函數(shù)表達式,先求得的值,然后結合的奇偶性,求得的值.【詳解】因為函數(shù)是奇函數(shù),所以,.故選:B【點睛】本題主要考查分段函數(shù)的解析式、分段函數(shù)求函數(shù)值,考查數(shù)形結合思想.意在考查學生的運算能力,分析問題、解決問題的能力.3、C【解析】
①用周期函數(shù)的定義驗證.②當時,,,再利用單調性判斷.③根據(jù)平移變換,函數(shù)的值域等價于函數(shù)的值域,而,當時,再求值域.【詳解】因為,故①錯誤;當時,,所以,所以在上單調遞增,故②正確;函數(shù)的值域等價于函數(shù)的值域,易知,故當時,,故③正確.故選:C.【點睛】本題考查三角函數(shù)的性質,還考查推理論證能力以及分類討論思想,屬于中檔題.4、B【解析】
根據(jù)正四棱錐底邊邊長為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因為正四棱錐底邊邊長為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【點睛】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.5、C【解析】
根據(jù)已知條件求得等差數(shù)列的通項公式,判斷出最小時的值,由此求得的最小值.【詳解】依題意,解得,所以.由解得,所以前項和中,前項的和最小,且.故選:C【點睛】本小題主要考查等差數(shù)列通項公式和前項和公式的基本量計算,考查等差數(shù)列前項和最值的求法,屬于基礎題.6、A【解析】
利用復數(shù)的除法運算化簡,求得對應的坐標,由此判斷對應點所在象限.【詳解】,對應的點的坐標為,位于第一象限.故選:A.【點睛】本小題主要考查復數(shù)除法運算,考查復數(shù)對應點所在象限,屬于基礎題.7、A【解析】
設為、的夾角,根據(jù)題意求得,然后建立平面直角坐標系,設,,,根據(jù)平面向量數(shù)量積的坐標運算得出點的軌跡方程,將和轉化為圓上的點到定點距離,利用數(shù)形結合思想可得出結果.【詳解】由已知可得,則,,,建立平面直角坐標系,設,,,由,可得,即,化簡得點的軌跡方程為,則,則轉化為圓上的點與點的距離,,,,轉化為圓上的點與點的距離,,.故選:A.【點睛】本題考查和向量與差向量模最值的求解,將向量坐標化,將問題轉化為圓上的點到定點距離的最值問題是解答的關鍵,考查化歸與轉化思想與數(shù)形結合思想的應用,屬于中等題.8、B【解析】
化簡復數(shù),由它是純虛數(shù),求得,從而確定對應的點的坐標.【詳解】是純虛數(shù),則,,,對應點為,在第二象限.故選:B.【點睛】本題考查復數(shù)的除法運算,考查復數(shù)的概念與幾何意義.本題屬于基礎題.9、A【解析】
先由題意可得數(shù)列為等差數(shù)列,再根據(jù),,可求出公差,即可求出.【詳解】數(shù)列滿足,則數(shù)列為等差數(shù)列,,,,,,,故選:.【點睛】本題主要考查了等差數(shù)列的性質和通項公式的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.10、A【解析】
首先利用二倍角正切公式由,求出,再根據(jù)充分條件、必要條件的定義判斷即可;【詳解】解:∵,∴可解得或,∴“”是“”的充分不必要條件.故選:A【點睛】本題主要考查充分條件和必要條件的判斷,二倍角正切公式的應用是解決本題的關鍵,屬于基礎題.11、B【解析】
設點、,并設直線的方程為,由得,將直線的方程代入韋達定理,求得,結合的面積求得的值,結合焦點弦長公式可求得.【詳解】設點、,并設直線的方程為,將直線的方程與拋物線方程聯(lián)立,消去得,由韋達定理得,,,,,,,,可得,,拋物線的準線與軸交于,的面積為,解得,則拋物線的方程為,所以,.故選:B.【點睛】本題考查拋物線焦點弦長的計算,計算出拋物線的方程是解答的關鍵,考查計算能力,屬于中等題.12、D【解析】A.若,則或,故A錯誤;B.若,則或故B錯誤;C.若,則或,或與相交;D.若,則,正確.故選D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
直接利用關系式求出函數(shù)的被積函數(shù)的原函數(shù),進一步求出的值.【詳解】解:若,則,即,所以.故答案為:.【點睛】本題考查的知識要點:定積分的應用,被積函數(shù)的原函數(shù)的求法,主要考查學生的運算能力和轉換能力及思維能力,屬于基礎題.14、18【解析】
先由,可得,再結合等差數(shù)列的前項和公式求解即可.【詳解】解:因為,所以,.故答案為:18.【點睛】本題考查了等差數(shù)列基本量的運算,重點考查了等差數(shù)列的前項和公式,屬基礎題.15、【解析】
的展開式的通項為,取計算得到答案.【詳解】的展開式的通項為:,取得到常數(shù)項.故答案為:.【點睛】本題考查了二項式定理,意在考查學生的計算能力.16、【解析】
分兩步進行:首先,先排第一行,再排第二行,最后排第三行;其次,對每一行選人;最后,利用計算出概率即可.【詳解】首先,第一行隊伍的排法有種;第二行隊伍的排法有2種;第三行隊伍的排法有1種;然后,第一行的每個位置的人員安排有種;第二行的每個位置的人員安排有種;第三行的每個位置的人員安排有種.所以來自同一隊的戰(zhàn)士既不在同一行,也不在同一列的概率.故答案為:.【點睛】本題考查了分步計數(shù)原理,排列與組合知識,考查了轉化能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)詳見解析.【解析】
(Ⅰ)由橢圓的定義可得,周長取最大值時,線段過點,可求出,從而求出橢圓的標準方程;(Ⅱ)設直線,直線,,,,.把直線與直線的方程分別代入橢圓的方程,利用韋達定理和弦長公式求出和,根據(jù)求出的值.最后直線與直線的方程聯(lián)立,求兩直線的交點即得結論.【詳解】(Ⅰ)設的周長為,則,當且僅當線段過點時“”成立.,,又,,橢圓的標準方程為.(Ⅱ)若直線的斜率不存在,則直線的斜率也不存在,這與直線與直線相交于點矛盾,所以直線的斜率存在.設,,,,,.將直線的方程代入橢圓方程得:.,,.同理,.由得,此時.直線,聯(lián)立直線與直線的方程得,即點在定直線.【點睛】本題考查橢圓的標準方程,考查直線與橢圓的位置關系,考查學生的邏輯推理能力和運算能力,屬于難題.18、(1)(ⅰ)(ⅱ)分布表見解析;(2)理由見解析【解析】
(1)(i)若家長對小孩子的飲食習慣完全不了解,則家長對小孩的排序是隨意猜測的,家長的排序有種等可能結果,利用列舉法求出其中滿足“家長的排序與對應位置的數(shù)字完全不同”的情況有9種,由此能求出他們在一輪游戲中,對四種食物排出的序號完全不同的概率.
(ii)根據(jù)(i)的分析,同樣只考慮小孩排序為1234的情況,家長的排序一共有24種情況,由此能求出X的分布列.
(2)假設家長對小孩的飲食習慣完全不了解,在一輪游戲中,P(X<4)=P(X=0)+P(X=2)=,三輪游戲結果都滿足“X<4”的概率為,這個結果發(fā)生的可能性很小,從而這位家長對小孩飲食習慣比較了解.【詳解】(1)(i)若家長對小孩子的飲食習慣完全不了解,則家長對小孩的排序是隨意猜測的,先考慮小孩的排序為xA,xB,xC,xD為1234的情況,家長的排序有=24種等可能結果,其中滿足“家長的排序與對應位置的數(shù)字完全不同”的情況有9種,分別為:2143,2341,2413,3142,3412,3421,4123,4312,4321,∴家長的排序與對應位置的數(shù)字完全不同的概率P=.基小孩對四種食物的排序是其他情況,只需將角標A,B,C,D按照小孩的順序調整即可,假設小孩的排序xA,xB,xC,xD為1423的情況,四種食物按1234的排列為ACDB,再研究yAyByCyD的情況即可,其實這樣處理后與第一種情況的計算結果是一致的,∴他們在一輪游戲中,對四種食物排出的序號完全不同的概率為.(ii)根據(jù)(i)的分析,同樣只考慮小孩排序為1234的情況,家長的排序一共有24種情況,列出所有情況,分別計算每種情況下的x的值,X的分布列如下表:X02468101214161820P(2)這位家長對小孩的飲食習慣比較了解.理由如下:假設家長對小孩的飲食習慣完全不了解,由(1)可知,在一輪游戲中,P(X<4)=P(X=0)+P(X=2)=,三輪游戲結果都滿足“X<4”的概率為()3=,這個結果發(fā)生的可能性很小,∴這位家長對小孩飲食習慣比較了解.【點睛】本題考查概率的求法,考查古典概型、排列組合、列舉法等基礎知識,考查運算求解能力,是中檔題.19、(1)(2)不存在;詳見解析【解析】
(1)設,,,通過,即為的中點,轉化求解,點的軌跡的方程.(2)設直線的方程為,先根據(jù),可得,①,再根據(jù)韋達定理,點在橢圓上可得,②,將①代入②可得,該方程無解,問題得以解決【詳解】(1)設,,則,,由題意知,所以為中點,由中點坐標公式得,即,又點在圓:上,故滿足,得.曲線的方程.(2)由題意知直線的斜率存在且不為零,設直線的方程為,因為,故,即①,聯(lián)立,消去得:,設,,,,,因為四邊形為平行四邊形,故,點在橢圓上,故,整理得②,將①代入
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 酒店贈品禮品贈送管理
- 體育休閑行業(yè)工程師的工作總結
- 班級文化建設與維系計劃
- 廣東省佛山市禪城區(qū)2023-2024學年六年級上學期英語期末試卷
- 第24章 圓-單元測評卷(1)-2024-2025學年數(shù)學人教版九年級上冊(含答案解析)
- 2023-2024學年四川省成都市青羊區(qū)樹德中學高一(下)期中地理試卷
- 《地球公轉必修》課件
- 《能言善辯的名人》課件
- 2024年陜西省榆林市公開招聘警務輔助人員輔警筆試自考題1卷含答案
- 2021年江蘇省淮安市公開招聘警務輔助人員輔警筆試自考題1卷含答案
- 《產品價值點》課件
- 內科醫(yī)生如何與患者建立有效的溝通
- 歌廳消防安全管理制度
- 《雪地尋蹤》選擇題及答案
- 中醫(yī)科工作總結及計劃
- 窗簾采購投標方案(技術標)
- 供貨商合同協(xié)議書簡單版正規(guī)范本(通用版)
- 職業(yè)學校消防安全課件
- 基于多元回歸的計量經(jīng)濟學論文
- 工程全過程造價咨詢服務方案(技術方案)
- 數(shù)字媒體專業(yè)發(fā)展規(guī)劃
評論
0/150
提交評論