版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省長豐二中2023屆高三第三次模擬測試數(shù)學(xué)試題試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,則向量在向量上的投影是()A. B. C. D.2.有一改形塔幾何體由若千個正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個頂點是下層正方體上底面各邊的中點.已知最底層正方體的棱長為8,如果改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是()A.8 B.7 C.6 D.43.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.4.命題“”的否定是()A. B.C. D.5.設(shè)函數(shù),則函數(shù)的圖像可能為()A. B. C. D.6.已知為拋物線的準(zhǔn)線,拋物線上的點到的距離為,點的坐標(biāo)為,則的最小值是()A. B.4 C.2 D.7.某幾何體的三視圖如圖所示,則此幾何體的體積為()A. B.1 C. D.8.已知函數(shù)的圖像與一條平行于軸的直線有兩個交點,其橫坐標(biāo)分別為,則()A. B. C. D.9.2019年10月1日,為了慶祝中華人民共和國成立70周年,小明、小紅、小金三人以國慶為主題各自獨立完成一幅十字繡贈送給當(dāng)?shù)氐拇逦瘯?,這三幅十字繡分別命名為“鴻福齊天”、“國富民強”、“興國之路”,為了弄清“國富民強”這一作品是誰制作的,村支書對三人進行了問話,得到回復(fù)如下:小明說:“鴻福齊天”是我制作的;小紅說:“國富民強”不是小明制作的,就是我制作的;小金說:“興國之路”不是我制作的,若三人的說法有且僅有一人是正確的,則“鴻福齊天”的制作者是()A.小明 B.小紅 C.小金 D.小金或小明10.已知復(fù)數(shù)z,則復(fù)數(shù)z的虛部為()A. B. C.i D.i11.已知,則()A. B. C. D.12.已知函數(shù),則在上不單調(diào)的一個充分不必要條件可以是()A. B. C.或 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知單位向量的夾角為,則=_________.14.如圖,在平面四邊形ABCD中,|AC|=3,|BD|=4,則(AB+15.已知向量,,,若,則______.16.已知多項式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,則a4=________,a5=________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若恒成立,求實數(shù)的取值范圍.18.(12分)如圖,在三棱柱中,平面ABC.(1)證明:平面平面(2)求二面角的余弦值.19.(12分)已知函數(shù)在上的最大值為3.(1)求的值及函數(shù)的單調(diào)遞增區(qū)間;(2)若銳角中角所對的邊分別為,且,求的取值范圍.20.(12分)已知與有兩個不同的交點,其橫坐標(biāo)分別為().(1)求實數(shù)的取值范圍;(2)求證:.21.(12分)已知拋物線的焦點也是橢圓的一個焦點,與的公共弦的長為.(1)求的方程;(2)過點的直線與相交于、兩點,與相交于、兩點,且與同向,設(shè)在點處的切線與軸的交點為,證明:直線繞點旋轉(zhuǎn)時,總是鈍角三角形;(3)為上的動點,、為長軸的兩個端點,過點作的平行線交橢圓于點,過點作的平行線交橢圓于點,請問的面積是否為定值,并說明理由.22.(10分)在某社區(qū)舉行的2020迎春晚會上,張明和王慧夫妻倆參加該社區(qū)的“夫妻蒙眼擊鼓”游戲,每輪游戲中張明和王慧各蒙眼擊鼓一次,每個人擊中鼓則得積分100分,沒有擊中鼓則扣積分50分,最終積分以家庭為單位計分.已知張明每次擊中鼓的概率為,王慧每次擊中鼓的概率為;每輪游戲中張明和王慧擊中與否互不影響,假設(shè)張明和王慧他們家庭參加兩輪蒙眼擊鼓游戲.(1)若家庭最終積分超過200分時,這個家庭就可以領(lǐng)取一臺全自動洗衣機,問張明和王慧他們家庭可以領(lǐng)取一臺全自動洗衣機的概率是多少?(2)張明和王慧他們家庭兩輪游戲得積分之和的分布列和數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
先利用向量坐標(biāo)運算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點睛】本題考查了向量加法、減法的坐標(biāo)運算和向量投影的概念,考查了學(xué)生概念理解,數(shù)學(xué)運算的能力,屬于中檔題.2.A【解析】
則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,以此類推,能求出改形塔的最上層正方體的邊長小于1時該塔形中正方體的個數(shù)的最小值的求法.【詳解】最底層正方體的棱長為8,則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,從下往上第五層正方體的棱長為:,從下往上第六層正方體的棱長為:,從下往上第七層正方體的棱長為:,從下往上第八層正方體的棱長為:,∴改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是8.故選:A.【點睛】本小題主要考查正方體有關(guān)計算,屬于基礎(chǔ)題.3.C【解析】
由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時雙曲線,則曲線的離心率為,故選C.【點睛】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程及其簡單的幾何性質(zhì)的應(yīng)用,其中解答中熟記雙曲線的幾何性質(zhì),準(zhǔn)確運算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.4.D【解析】
根據(jù)全稱命題的否定是特稱命題,對命題進行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點睛】本題考查全稱命題的否定,難度容易.5.B【解析】
根據(jù)函數(shù)為偶函數(shù)排除,再計算排除得到答案.【詳解】定義域為:,函數(shù)為偶函數(shù),排除,排除故選【點睛】本題考查了函數(shù)圖像,通過函數(shù)的單調(diào)性,奇偶性,特殊值排除選項是常用的技巧.6.B【解析】
設(shè)拋物線焦點為,由題意利用拋物線的定義可得,當(dāng)共線時,取得最小值,由此求得答案.【詳解】解:拋物線焦點,準(zhǔn)線,過作交于點,連接由拋物線定義,
,
當(dāng)且僅當(dāng)三點共線時,取“=”號,∴的最小值為.
故選:B.【點睛】本題主要考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.7.C【解析】該幾何體為三棱錐,其直觀圖如圖所示,體積.故選.8.A【解析】
畫出函數(shù)的圖像,函數(shù)對稱軸方程為,由圖可得與關(guān)于對稱,即得解.【詳解】函數(shù)的圖像如圖,對稱軸方程為,,又,由圖可得與關(guān)于對稱,故選:A【點睛】本題考查了正弦型函數(shù)的對稱性,考查了學(xué)生綜合分析,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于中檔題.9.B【解析】
將三個人制作的所有情況列舉出來,再一一論證.【詳解】依題意,三個人制作的所有情況如下所示:123456鴻福齊天小明小明小紅小紅小金小金國富民強小紅小金小金小明小紅小明興國之路小金小紅小明小金小明小紅若小明的說法正確,則均不滿足;若小紅的說法正確,則4滿足;若小金的說法正確,則3滿足.故“鴻福齊天”的制作者是小紅,故選:B.【點睛】本題考查推理與證明,還考查推理論證能力以及分類討論思想,屬于基礎(chǔ)題.10.B【解析】
利用復(fù)數(shù)的運算法則、虛部的定義即可得出【詳解】,則復(fù)數(shù)z的虛部為.故選:B.【點睛】本題考查了復(fù)數(shù)的運算法則、虛部的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.11.C【解析】
利用誘導(dǎo)公式得,,再利用倍角公式,即可得答案.【詳解】由可得,∴,∴.故選:C.【點睛】本題考查誘導(dǎo)公式、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意三角函數(shù)的符號.12.D【解析】
先求函數(shù)在上不單調(diào)的充要條件,即在上有解,即可得出結(jié)論.【詳解】,若在上不單調(diào),令,則函數(shù)對稱軸方程為在區(qū)間上有零點(可以用二分法求得).當(dāng)時,顯然不成立;當(dāng)時,只需或,解得或.故選:D.【點睛】本題考查含參數(shù)的函數(shù)的單調(diào)性及充分不必要條件,要注意二次函數(shù)零點的求法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
因為單位向量的夾角為,所以,所以==.14.-7【解析】
由題意得AB+【詳解】由題意得ABBC+∴AB+【點睛】突破本題的關(guān)鍵是抓住題中所給圖形的特點,利用平面向量基本定理和向量的加減運算,將所給向量統(tǒng)一用AC,15.-1【解析】
由向量垂直得向量的數(shù)量積為0,根據(jù)數(shù)量積的坐標(biāo)運算可得結(jié)論.【詳解】由已知,∵,∴,.故答案為:-1.【點睛】本題考查向量垂直的坐標(biāo)運算.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.16.164【解析】
只需令x=0,易得a5,再由(x+1)3(x+2)2=(x+1)5+2(x+1)4+(x+1)3,可得a4=+2+.【詳解】令x=0,得a5=(0+1)3(0+2)2=4,而(x+1)3(x+2)2=(x+1)3[(x+1)2+2(x+1)+1]=(x+1)5+2(x+1)4+(x+1)3;則a4=+2+=5+8+3=16.故答案為:16,4.【點睛】本題主要考查了多項式展開中的特定項的求解,可以用賦值法也可以用二項展開的通項公式求解,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)增區(qū)間為,減區(qū)間為;(2).【解析】
(1)將代入函數(shù)的解析式,利用導(dǎo)數(shù)可得出函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)的導(dǎo)數(shù),分類討論的范圍,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求出函數(shù)的最值可判斷是否恒成立,可得實數(shù)的取值范圍.【詳解】(1)當(dāng)時,,則,當(dāng)時,,則,此時,函數(shù)為減函數(shù);當(dāng)時,,則,此時,函數(shù)為增函數(shù).所以,函數(shù)的增區(qū)間為,減區(qū)間為;(2),則,.①當(dāng)時,即當(dāng)時,,由,得,此時,函數(shù)為增函數(shù);由,得,此時,函數(shù)為減函數(shù).則,不合乎題意;②當(dāng)時,即時,.不妨設(shè),其中,令,則或.(i)當(dāng)時,,當(dāng)時,,此時,函數(shù)為增函數(shù);當(dāng)時,,此時,函數(shù)為減函數(shù);當(dāng)時,,此時,函數(shù)為增函數(shù).此時,而,構(gòu)造函數(shù),,則,所以,函數(shù)在區(qū)間上單調(diào)遞增,則,即當(dāng)時,,所以,.,符合題意;②當(dāng)時,,函數(shù)在上為增函數(shù),,符合題意;③當(dāng)時,同理可得函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,此時,則,解得.綜上所述,實數(shù)的取值范圍是.【點睛】本題考查導(dǎo)數(shù)知識的運用,考查函數(shù)的單調(diào)性與最值,考查恒成立問題,正確求導(dǎo)和分類討論是關(guān)鍵,屬于難題.18.(1)證明見解析(2)【解析】
(1)證明平面即平面平面得證;(2)分別以所在直線為x軸,y軸.軸,建立如圖所示的空間直角坐標(biāo)系C-xyz,再利用向量方法求二面角的余弦值.【詳解】(1)證明:因為平面ABC,所以因為.所以.即又.所以平面因為平面.所以平面平面(2)解:由題可得兩兩垂直,所以分別以所在直線為x軸,y軸.軸,建立如圖所示的空間直角坐標(biāo)系C-xyz,則,所以設(shè)平面的一個法向量為,由.得令,得又平面,所以平面的一個法向量為.所以二面角的余弦值為.【點睛】本題主要考查空間幾何位置關(guān)系的證明,考查二面角的計算,意在考查學(xué)生對這些知識的理解掌握水平.19.(1),函數(shù)的單調(diào)遞增區(qū)間為;(2).【解析】
(1)運用降冪公式和輔助角公式,把函數(shù)的解析式化為正弦型函數(shù)解析式形式,根據(jù)已知,可以求出的值,再結(jié)合正弦型函數(shù)的性質(zhì)求出函數(shù)的單調(diào)遞增區(qū)間;(2)由(1)結(jié)合已知,可以求出角的值,通過正弦定理把問題的取值范圍轉(zhuǎn)化為兩邊對角的正弦值的比值的取值范圍,結(jié)合已知是銳角三角形,三角形內(nèi)角和定理,最后求出的取值范圍.【詳解】解:(1)由已知,所以因此令得因此函數(shù)的單調(diào)遞增區(qū)間為(2)由已知,∴由得,因此所以因為為銳角三角形,所以,解得因此,那么【點睛】本題考查了降冪公式、輔助角公式,考查了正弦定理,考查了正弦型三角函數(shù)的單調(diào)性,考查了數(shù)學(xué)運算能力.20.(1);(2)見解析【解析】
(1)利用導(dǎo)數(shù)研究的單調(diào)性,分析函數(shù)性質(zhì),數(shù)形結(jié)合,即得解;(2)構(gòu)造函數(shù),可證得:,,分析直線,與從左到右交點的橫坐標(biāo),在,處的切線即得解.【詳解】(1)設(shè)函數(shù),,令,令故在單調(diào)遞減,在單調(diào)遞增,∴,∵時;;時.(2)①過點,的直線為,則令,,,.②過點,的直線為,則,在上單調(diào)遞增.③設(shè)直線,與從左到右交點的橫坐標(biāo)依次為,,由圖知.④在,處的切線分別為,,同理可以證得,.記直線與兩切線和從左到右交點的橫坐標(biāo)依次為,.【點睛】本題考查了函數(shù)與導(dǎo)數(shù)綜合,考查了學(xué)生數(shù)形結(jié)合,綜合分析,轉(zhuǎn)化劃歸,邏輯推理,數(shù)學(xué)運算的能力,屬于較難題.21.(1);(2)證明見解析;(3)是,理由見解析.【解析】
(1)根據(jù)兩個曲線的焦點相同,得到,再根據(jù)與的公共弦長為得出,可求出和的值,進而可得出曲線的方程;(2)設(shè)點,根據(jù)導(dǎo)數(shù)的幾何意義得到曲線在點處的切線方程,求出點的坐標(biāo),利用向量的數(shù)量積得出,則問題得以證明;(3)設(shè)直線,直線,、、,推導(dǎo)出以及,求出和,通過化簡計算可得出為定值,進而可得出結(jié)論.【詳解】(1)由知其焦點的坐標(biāo)為,也是橢圓的一個焦點,,①又與的公共弦的長為,與都關(guān)于軸對稱,且的方程為,由此易知與的公共點的坐標(biāo)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年幼兒園后勤工作計劃書格式
- 2025年白酒銷售個人工作計劃范文
- 2025年大學(xué)新學(xué)期學(xué)習(xí)部成員的個人工作計劃
- Unit 6 Survival Using language 說課稿-2024-2025學(xué)年高中英語外研版(2019)選擇性必修第二冊
- 綠化施工員工作職責(zé)及具體內(nèi)容
- Unit 1 Cultural Heritage Discovering Useful Structures 說課稿-2024-2025學(xué)年高中英語人教版(2019)必修第二冊
- 2025年度教學(xué)工作計劃范文工作計劃范文
- 人教版歷史與社會八年級上冊4.3.1《高度集權(quán)的北宋政權(quán)》說課稿
- 2025年秋季學(xué)期教師工作計劃范文
- 2025年節(jié)能減排工作季度總結(jié)與計劃
- SB/T 10412-2007速凍面米食品
- 數(shù)控線切割機床的手工編程
- -油水井小修工藝技術(shù)課件
- (完整版)兒童醫(yī)學(xué)康復(fù)科疾病護理常規(guī)
- 2022閥門制造作業(yè)指導(dǎo)書
- 科技創(chuàng)新社團活動教案課程
- 建筑結(jié)構(gòu)加固工程施工質(zhì)量驗收規(guī)范表格
- 部編版語文六年級上冊作文總復(fù)習(xí)課件
- 無水氯化鈣MSDS資料
- 專利產(chǎn)品“修理”與“再造”的區(qū)分
- 氨堿法純堿生產(chǎn)工藝概述
評論
0/150
提交評論