高考數(shù)學(xué)人教魯京津?qū)@硪惠啅?fù)習(xí)課件第六章數(shù)列6.1_第1頁
高考數(shù)學(xué)人教魯京津?qū)@硪惠啅?fù)習(xí)課件第六章數(shù)列6.1_第2頁
高考數(shù)學(xué)人教魯京津?qū)@硪惠啅?fù)習(xí)課件第六章數(shù)列6.1_第3頁
高考數(shù)學(xué)人教魯京津?qū)@硪惠啅?fù)習(xí)課件第六章數(shù)列6.1_第4頁
高考數(shù)學(xué)人教魯京津?qū)@硪惠啅?fù)習(xí)課件第六章數(shù)列6.1_第5頁
已閱讀5頁,還剩67頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、,第六章數(shù) 列,6.1數(shù)列的概念與簡單表示法,內(nèi)容索引,基礎(chǔ)知識 自主學(xué)習(xí),題型分類 深度剖析,高頻小考點,思想方法 感悟提高,練出高分,基礎(chǔ)知識自主學(xué)習(xí),1.數(shù)列的定義 按照 排列的一列數(shù)稱為數(shù)列,數(shù)列中的每一個數(shù)叫做這個數(shù)列的 . 2.數(shù)列的分類,一定順序,項,有限,無限,知識梳理,1,答案,答案,3.數(shù)列的表示法 數(shù)列有三種表示法,它們分別是 、 和. 4.數(shù)列的通項公式 如果數(shù)列an的第n項與 之間的關(guān)系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的通項公式.,列表法,圖象法,解析法,序號n,S1,SnSn1,答案,判斷下面結(jié)論是否正確(請在括號中打“”或“”) (1)所有數(shù)列的第n

2、項都能使用公式表達.() (2)根據(jù)數(shù)列的前幾項歸納出數(shù)列的通項公式可能不止一個.() (3)1,1,1,1,不能構(gòu)成一個數(shù)列.() (4)任何一個數(shù)列不是遞增數(shù)列,就是遞減數(shù)列.() (5)如果數(shù)列an的前n項和為Sn,則對nN*,都有an1Sn1Sn.() (6)在數(shù)列an中,對于任意正整數(shù)m,n,amnamn1,若a11,則a22.(),思考辨析,答案,1.下列數(shù)列中,既是遞增數(shù)列又是無窮數(shù)列的是(),B.1,2,3,4,,解析根據(jù)定義,屬于無窮數(shù)列的是選項A、B、C(用省略號),屬于遞增數(shù)列的是選項C、D,故同時滿足要求的是選項C.,C,考點自測,2,解析答案,1,2,3,4,5,2.

3、數(shù)列3,7,11,15,的通項公式可能是() A.an4n7 B.an(1)n(4n1) C.an(1)n(4n1) D.an(1)n1(4n1),C,答案,1,2,3,4,5,3.設(shè)數(shù)列an的前n項和Snn2,則a8的值為() A.15 B.16C.49 D.64,解析Snn2,a1S11. 當(dāng)n2時,anSnSn1n2(n1)22n1. 當(dāng)n1時符合上式, an2n1,a828115.,A,解析答案,1,2,3,4,5,4.(教材改編)根據(jù)下面的圖形及相應(yīng)的點數(shù),寫出點數(shù)構(gòu)成的數(shù)列的一個通項公式an_.,5n4,1,2,3,4,5,答案,5.已知數(shù)列an的前n項和Snn21,則an_.,解

4、析當(dāng)n1時,a1S12,當(dāng)n2時, anSnSn1n21(n1)212n1,,解析答案,1,2,3,4,5,返回,題型分類深度剖析,解析注意到分母0,2,4,6都是偶數(shù),對照選項排除即可.,C,題型一由數(shù)列的前幾項求數(shù)列的通項公式,解析答案,解析答案,思維升華,根據(jù)所給數(shù)列的前幾項求其通項時,需仔細(xì)觀察分析,抓住其幾方面的特征:分式中分子、分母的各自特征;相鄰項的聯(lián)系特征;拆項后的各部分特征;符號特征.應(yīng)多進行對比、分析,從整體到局部多角度觀察、歸納、聯(lián)想.,思維升華,根據(jù)數(shù)列的前幾項,寫出下列各數(shù)列的一個通項公式. (1)1,7,13,19,; 解數(shù)列中各項的符號可通過(1)n表示, 從第2

5、項起,每一項的絕對值總比它的前一項的絕對值大6, 故通項公式為an(1)n(6n5).,跟蹤訓(xùn)練1,解析答案,(2)0.8,0.88,0.888,;,解析答案,解各項的分母分別為21,22,23,24,易看出第2,3,4項的分子分別比分母小3.,解析答案,例2設(shè)數(shù)列an的前n項和為Sn,數(shù)列Sn的前n項和為Tn,滿足Tn2Snn2,nN*. (1)求a1的值; 解令n1時,T12S11, T1S1a1,a12a11,a11.,題型二由數(shù)列的前n項和求數(shù)列的通項公式,解析答案,(2)求數(shù)列an的通項公式.,解析答案,思維升華,解n2時,Tn12Sn1(n1)2, 則SnTnTn12Snn22Sn

6、1(n1)2 2(SnSn1)2n12an2n1. 因為當(dāng)n1時,a1S11也滿足上式, 所以Sn2an2n1(n1), 當(dāng)n2時,Sn12an12(n1)1, 兩式相減得an2an2an12, 所以an2an12(n2),所以an22(an12),,解析答案,思維升華,因為a1230, 所以數(shù)列an2是以3為首項,公比為2的等比數(shù)列. 所以an232n1,所以an32n12, 當(dāng)n1時也成立, 所以an32n12.,思維升華,思維升華,A,跟蹤訓(xùn)練2,解析答案,(2)已知數(shù)列an的前n項和Sn3n22n1,則其通項公式為 _.,解析當(dāng)n1時,a1S13122112; 當(dāng)n2時, anSnSn

7、13n22n13(n1)22(n1)16n5, 顯然當(dāng)n1時,不滿足上式.,解析答案,例3(1)設(shè)數(shù)列an中,a12,an1ann1,則通項an_.,解析由題意得,當(dāng)n2時, ana1(a2a1)(a3a2)(anan1),題型三由數(shù)列的遞推關(guān)系求通項公式,解析答案,(2)數(shù)列an中,a11,an13an2,則它的一個通項公式為an_.,解析答案,思維升華,解析方法一(累乘法) an13an2,即an113(an1),,即an123n1(n1),所以an23n11(n2),,解析答案,思維升華,即an123n1(n1),所以an23n11(n2), 又a11也滿足上式,故數(shù)列an的一個通項公式

8、為an23n11. 方法二(迭代法) an13an2, 即an113(an1)32(an11)33(an21) 3n(a11)23n(n1),,所以an23n11(n2), 又a11也滿足上式, 故數(shù)列an的一個通項公式為an23n11. 答案23n11,思維升華,已知數(shù)列的遞推關(guān)系,求數(shù)列的通項時,通常用累加、累乘、構(gòu)造法求解. 當(dāng)出現(xiàn)anan1m時,構(gòu)造等差數(shù)列;當(dāng)出現(xiàn)anxan1y時,構(gòu)造等比數(shù)列;當(dāng)出現(xiàn)anan1f(n)時,用累加法求解;當(dāng)出現(xiàn) f(n)時,用累乘法求解.,思維升華,以上(n1)個式子相乘得,跟蹤訓(xùn)練3,解析答案,(2)已知數(shù)列an的前n項和為Sn,且Sn2an1(nN

9、*),則a5等于() A.16 B.16 C.31 D.32 解析當(dāng)n1時,S12a11,a11. 當(dāng)n2時,Sn12an11, an2an2an1,an2an1. an是等比數(shù)列且a11,q2, 故a5a1q42416.,B,解析答案,命題點1數(shù)列的單調(diào)性,A.遞減數(shù)列 B.遞增數(shù)列 C.常數(shù)列 D.擺動數(shù)列,B,題型四數(shù)列的性質(zhì),解析答案,命題點2數(shù)列的周期性,解析答案,周期T(n1)(n2)3.a8a322a22.,命題點3數(shù)列的最值,C,解析答案,思維升華,(1)解決數(shù)列的單調(diào)性問題可用以下三種方法 用作差比較法,根據(jù)an1an的符號判斷數(shù)列an是遞增數(shù)列、遞減數(shù)列或是常數(shù)列.,結(jié)合相

10、應(yīng)函數(shù)的圖象直觀判斷. (2)解決數(shù)列周期性問題的方法 先根據(jù)已知條件求出數(shù)列的前幾項,確定數(shù)列的周期,再根據(jù)周期性求值. (3)數(shù)列的最值可以利用數(shù)列的單調(diào)性或求函數(shù)最值的思想求解.,思維升華,an為周期數(shù)列且T4,,跟蹤訓(xùn)練4,解析答案,(2)設(shè)an3n215n18,則數(shù)列an中的最大項的值是(),由二次函數(shù)性質(zhì),得當(dāng)n2或3時,an最大,最大值為0.,D,解析答案,返回,高頻小考點,典例(1)將石子擺成如圖所示的梯形形狀,稱數(shù)列5,9,14,20,為“梯形數(shù)”.根據(jù)圖形的構(gòu)成,此數(shù)列的第2 014項與5的差,即a2 0145 等于(),A.2 0182 012 B.2 0202 013

11、C.1 0092 012 D.1 0102 013,高頻小考點,5.數(shù)列中的新定義問題,A.(1,) B.(,1 C.(1,) D.(,1,解析答案,思維點撥,溫馨提醒,返回,思維點撥 (1)觀察圖形,易得anan1n2(n2)可利用累加法求解. (2)由“減差數(shù)列”的定義,可得關(guān)于bn的不等式,把bn的通項公式代入,化歸為不等式恒成立問題求解.,解析答案,溫馨提醒,解析(1)因為anan1n2(n2),a15, 所以a2 014(a2 014a2 013)(a2 013a2 012)(a2a1)a1 2 0162 01545,所以a2 01451 0102 013,故選D. (2)由數(shù)列b3

12、,b4,b5,是“減差數(shù)列”,,解析答案,溫馨提醒,化簡得t(n2)1.,答案(1)D,(2)C,溫馨提醒,解決數(shù)列的新定義問題要做到: (1)準(zhǔn)確轉(zhuǎn)化:解決數(shù)列新定義問題時,一定要讀懂新定義的本質(zhì)含義,將題目所給定義轉(zhuǎn)化成題目要求的形式,切忌同已有概念或定義相混淆. (2)方法選?。簩τ跀?shù)列新定義問題,搞清定義是關(guān)鍵,仔細(xì)認(rèn)真地從前幾項(特殊處、簡單處)體會題意,從而找到恰當(dāng)?shù)慕鉀Q方法.,返回,溫馨提醒,思想方法感悟提高,1.求數(shù)列通項或指定項.通常用觀察法(對于交錯數(shù)列一般用(1)n或(1)n1來區(qū)分奇偶項的符號);已知數(shù)列中的遞推關(guān)系,一般只要求寫出數(shù)列的前幾項,若求通項可用歸納、猜想和

13、轉(zhuǎn)化的方法.,3.已知遞推關(guān)系求通項:對這類問題的要求不高,但試題難度較難把握.一般有兩種常見思路: (1)算出前幾項,再歸納、猜想; (2)利用累加法或累乘法可求數(shù)列的通項公式. 4.數(shù)列的性質(zhì)可利用函數(shù)思想進行研究.,方法與技巧,1.數(shù)列anf(n)和函數(shù)yf(x)定義域不同,其單調(diào)性也有區(qū)別:yf(x)是增函數(shù)是anf(n)是遞增數(shù)列的充分不必要條件. 2.數(shù)列的通項公式可能不存在,也可能有多個. 3.由anSnSn1求得的an是從n2開始的,要對n1時的情況進行驗證.,失誤與防范,返回,練出高分,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析所給數(shù)列呈現(xiàn)分

14、數(shù)形式,且正負(fù)相間, 求通項公式時,我們可以把每一部分進行分解:符號、分母、分子.,C,解析答案,2.若數(shù)列an的通項公式是an(1)n(3n2),則a1a2a10等于() A.15 B.12C.12 D.15 解析由題意知,a1a2a10 14710(1)10(3102) (14)(710)(1)9(392)(1)10(3102) 3515.,A,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,D,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,4.若數(shù)列an滿足:a119,an1an3(nN*),而數(shù)列an的前n項和數(shù)值最

15、大時,n的值為() A.6 B.7 C.8 D.9 解析an1an3, 數(shù)列an是以19為首項,3為公差的等差數(shù)列, an19(n1)(3)223n. a7222110,a8222420, n7時,數(shù)列an的前n項和最大.,B,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,5.已知數(shù)列an的通項公式為ann22n(nN)*,則“1”是“數(shù)列an為遞增數(shù)列”的() A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件 解析若數(shù)列an為遞增數(shù)列,則有an1an0,,因此“1”是“數(shù)列an為遞增數(shù)列”的充分不必要條件,故選A.,A,1

16、,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,6.已知數(shù)列an的前n項和Snn22n1(nN*),則an_. 解析當(dāng)n2時,anSnSn12n1, 當(dāng)n1時,a1S14211,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,7.數(shù)列an中,已知a11,a22,an1anan2(nN*),則a7_. 解析由已知an1anan2,a11,a22, 能夠計算出a31,a41,a52,a61,a71.,1,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,8.已知數(shù)列an的前n項和為Sn,Sn2ann

17、,則an_. 解析當(dāng)n1時,S1a12a11,得a11, 當(dāng)n2時,anSnSn12ann2an1(n1), 即an2an11,an12(an11), 數(shù)列an1是首項為a112,公比為2的等比數(shù)列, an122n12n,an2n1.,2n1,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,9.數(shù)列an的通項公式是ann27n6. (1)這個數(shù)列的第4項是多少? 解當(dāng)n4時,a4424766. (2)150是不是這個數(shù)列的項?若是這個數(shù)列的項,它是第幾項? 解令an150,即n27n6150, 解得n16或n9(舍去), 即150是這個數(shù)列的第16項.,1,2

18、,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,(3)該數(shù)列從第幾項開始各項都是正數(shù)? 解令ann27n60,解得n6或n1(舍去). 所以從第7項起各項都是正數(shù).,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,(1)求a2,a3;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,(2)求an的通項公式.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,解由題設(shè)知a11.,于是a11,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,顯然,當(dāng)n1時也滿足上式.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,11.已知數(shù)列an滿足an1anan1(n2),a11,a23,記Sna1a2an,則下列結(jié)論正確的是() A.a2 0141,S2 0142 B.a2 0143,S2 0145 C.a2 0143,S2 0142 D.a2 0141,S2 0145 解析由an1anan1(n2),知an2an1an, 則an2an1(n2),an3an,an6an, 所以數(shù)列

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論