




文檔簡介
Computers&OperationsResearch33(2006)15051520/locate/corGeneratingoptimaltwo-sectioncuttingpatternsforrectangularblanksYaodongCui,DongliHe,XiaoxiaSongDepartmentofComputerScience,GuangxiNormalUniversity,Guilin,Guangxi541004,ChinaAbstractThispaperpresentsanalgorithmforgeneratingunconstrainedguillotine-cuttingpatternsforrectangularblanks.Apatternincludesatmosttwosections,eachofwhichconsistsofstripsofthesamelengthanddirection.Thesizesandstripdirectionsofthesectionsmustbedeterminedoptimallytomaximizethevalueoftheblankscut.Thealgorithmusesanimplicitenumerationmethodtoconsiderallpossiblesectionsizes,fromwhichtheoptimalsizesareselected.ItmaysolveallthebenchmarkproblemslistedintheOR-Librarytooptimality.Thecomputationalresultsindicatethatthealgorithmisefcientbothincomputationtimeandinmaterialutilization.Finally,solutionstosomeproblemsaregiven.H170152004ElsevierLtd.Allrightsreserved.Keywords:Guillotine;Optimization;Cuttingstockproblem;Two-dimensionalcutting1. IntroductionTheunconstrainedtwo-dimensionalcuttingproblemistheproblemofcuttingfromasinglerectangularsheetanumberofsmallerrectangularblanks,eachofwhichisofagivensizeandagivenvalue,soastomaximizethevalueoftheblankscut.Thisproblemappearsinthecuttingofsteelsheetsintorequiredsizes,inthecuttingofwoodsheetstomakefurniture,andinseveralotherindustrialareas.Therelatedproblemofminimizingtheamountofwasteproducedbythecuttingcanbeconvertedintothisproblembymakingthevalueofallblanksequaltotheirareas.Correspondingauthor.Fax:+867735812383E-mailaddress:(Y.Cui).0305-0548/$-seefrontmatterH170152004ElsevierLtd.Allrightsreserved.doi:10.1016/j.cor.2004.09.0221506 Y.Cuietal./Computers&OperationsResearch33(2006)15051520Inpracticeitisoftensufcienttoconsideronlyguillotinecuts.Aguillotinecutonarectangleisacutfromoneedgeoftherectangletotheoppositeedgethatisparalleltothetworemainingedges.Werefertotheunconstrainedtwo-dimensionalguillotine-cuttingproblemastheUTDGCP.Young-Gun and Kang 1 pointed out that the UTDGCP should be distinguished from the two-dimensionalguillotine-cuttingstockproblem(TDGCSP).TheTDGCSPistheproblemofcuttingallrequirednumberofsmallrectangularblanksofdifferentsizesfromasetoflargerectangularsheetsatminimumsheetcost.AsolutionoftheTDGCSPconsistsofseveralcuttingpatterns,eachofwhichmaybeconstructedbyanalgorithmfortheUTDGCP.Thelinearprogramming(LP)approachiswidelyusedtosolvetheTDGCSP2.ItsolvestheTDGCSPthroughiteration.AlargenumberofUTDGCPmustbesolvedbeforetheLPapproachndsasolutionclosetooptimal.ThereareseveralexactalgorithmsfortheUTDGCP,suchasthedynamic-programmingproceduresin34,thetree-searchproceduresin57.BecausetheproblemisNPhard,thesealgorithmsarenotadequateforlarge-scaleproblems.TheyarealsonotadequateforconstructingcuttingpatternswhentheLPapproachisusedtosolvetheTDGCSP.Restrictionsonthecuttingpatternsareoftenusedtospeedupthesolutionprocess,suchasthestagedcuttingpatterns3,4.Hi8presentedtwoexactalgorithmsforlarge-scaleunconstrainedtwoandthreestagedcuttingproblems.FayardandZissimopoulos9proposedaheuristicthatselectsanoptimalsubsetof optimal generated strips by solving a sequence of one-dimensional knapsack problems.Althoughrestrictionsmaydecreasethevalueofthecuttingpatterns,theymaycutdownthecomputationtimedrastically.Thispaperputsforwardanewrestrictiononthecuttingpatterns.Itsuggeststheapplicationoftwo-sectionpatterns.Atwo-sectionpatterncontainsatmosttwosections.Allstripsinasectionareofthesamelengthanddirection.Astripiseitherauniformstripthatincludesonlyblanksofthesamesize,orageneralstripconsistingofblanksofdifferentsizes.Anexactalgorithm(referredtoastheTSECalgorithm)forgeneratingoptimaltwo-sectionpatternsisconstructed.Itconsidersallpossiblesectionsizesimplicitlyandndstheoptimalsizesthroughcomparisons.Tocomparethealgorithmwiththealgorithmsfornon-stagedandstagedcuttingpatterns,computationswereperformedonbothbenchmarkproblemsandrandomproblems.TheresultsindicatethattheTSECalgorithmisefcientbothincomputationtimeandinmaterialutilization,andmaysimplifythecuttingprocess.ItshouldbenotedthatthealgorithmpresentedmightbealsoseenasanimprovedversionofthatofFayardandZissimopoulos9.Theiralgorithmusesaseriesofone-dimensionalknapsackproblemsforgeneratingasetofoptimalstripsandthenllstheminthesheetinanoptimalway.Althoughnotdenitelypointedout,theiralgorithmgeneratesonlytwo-sectionpatterns.2. Two-sectionpatterns2.1. NotationandfunctionsTable1listssomenotationandfunctionstobeused.Mostofthemwillbere-introducedwheretheyareusedforthersttime.Thereadermaynditismoreconvenienttolookforthenotationdenitioninthetablethaninthetext.Y.Cuietal./Computers&OperationsResearch33(2006)15051520 1507Table1NotationandfunctionsL,W Lengthandwidthofthestocksheetli,wi,ciLength,widthandvalueoftheithrectangularblank,i =1,2,.,mFX(x) ValueofX-sectionx W inanX-patternFY(x) ValueofY-sectionx W inanX-patternfX(y) ValueofX-sectionL y inaY-patternfY(y) ValueofY-sectionL y inaY-pattern|L| NumberofXbreakpointsbetween0andL|W| NumberofYbreakpointsbetween0andWBXThesetofXbreakpoints, BX=bx,1,bx,2,.,bx,|L|BYThesetofYbreakpoints, BY=by,1,by,2,.,by,|W|u(i,x) ValueofanX-stripx wi,0lessorequalslantxlessorequalslantL,i =1,2,.,mv(i,y) ValueofaY-stripy li,0lessorequalslantylessorequalslantW,i =1,2,.,mint(x) ReturnthemaximumintegernotlargerthanxFig.1.Strips:(a)anX-strip,(b)aY-strip.2.2. StripsAssumethatthedirectionoftheblanksisxed.Thisrestrictionisnotserious,sinceifablankl wcanbecutwitheitherdirection,itmaybetreatedastwodifferentblanksl wandw l,eachofwhichhasaxeddirection.Bothgeneralanduniformstripswillbeconsideredingeneratingtwo-sectionpatterns.Auniformstripcontainsonlyblanksofthesamesizeanddirection.AsshowninFig.1,astripmaybeeitherinXorYdirection.AstripisanX-stripifitisinXdirection;otherwiseitisaY-strip.BlanksinX-stripsareleftjustied,andthoseinY-stripsarebottomjustied.ThestriplengthofanX-stripismeasuredhorizontally,andthestriplengthofaY-stripismeasuredvertically.Onlystripsofwidthequaltoablankwidth(horizontalstrips)orlength(verticalstrips)willbeconsid-ered.Assumethattherearemblanks.Theithblankisofsizeliwi,withliandwibeingpositiveintegers,i =1,2,.,m.ThentheithX-stripisofwidthwi,andtheithY-stripisofwidthli,i =1,2,.,m.1508 Y.Cuietal./Computers&OperationsResearch33(2006)15051520Fig.2.Sections:(a)anX-section,(b)aY-section.Fig.3.X-patterns.Fig.4.Y-patterns.2.3. SectionsStripsinasectionareofthesamedirectionandlength.Thedirectionofthestripsisreferredtoasthesectiondirection.AsectionisanX-sectionifthestripsareinXdirection,otherwiseitisaY-section.Fig.2ashowsanX-sectionandFig.2bshowsaY-section.2.4. Two-sectionpatternsFigs.3and4showallpossiblepatternsthatshouldbeconsidered.Thearrowineachsectionindicatesthedirectionofthesection.Thetwosectionsmaybejustiedeithervertically(Y-pattern)orhorizontally(X-pattern).ThepatternsofFigs.3aand4aareone-sectionpatterns,whicharethespecialcasesoftwo-sectionpatterns.ThepatternofFig.3amaybeseenasatwo-sectionpatterncontainingtwoY-sections,andthepatternofFig.4amaybetakenasatwo-sectionpatternconsistingoftwoX-sections.AssumethatthesheetsizeisLW.ThewidthofanX-sectioninanX-patternisW(Fig.3b),andthelengthofaY-sectioninaY-patternisL(Fig.4b).Y.Cuietal./Computers&OperationsResearch33(2006)15051520 15092.5. Break-pointsManyauthors49haveusednormalsetstodevelopalgorithmsforguillotine-cuttingpatterns.Theelementsofthenormalsetsarereferredtoasbreakpointsinthispaper.Theyaredenedas:X breakpoints: x =msummationdisplayi=1zililessorequalslantL, zigreaterorequalslant0 andinteger,Y breakpoints: y =msummationdisplayi=1ziwilessorequalslantW, zigreaterorequalslant0 andinteger. (1)DenotethesetofallXbreakpointsby BX, BX=bx,1,bx,2,.,bx,|L|,where |L| isthenumberofXbreakpointsbetween0andL,bx,i|L|.Step3. Letx = bx,i,V = FX(x) +maxFX(L x),FY(L x).Gotostep2ifV|W|.Step3. Letx = by,i,V = fY(y) +maxfY(W y),fX(W y).Gotostep2ifV10800U4 48350130 48350130 48350130 0.04 1.66 32.56W1 167751 168289 162279 167751 0.02 0.18 8.91 8280.80W2 37617 37621 37621 37621 0.01 0.03 4.59 1427.35W3 253617 253617 250830 253617 0.06 0.36 23.08 10800W4 378366 378366 377910 0.14 0.71 57.29TheH_3STGcouldnotverifytheoptimalityofproblemsU3andW3becausethatthecomputationtimeforeachproblemwasnotallowedtoexceed3h.ItalsocouldnotsolveproblemsU4andW4forthelargescaleoftheproblemsizes.Theseeightproblemsarealllarge-scaleproblems.Thesheetsizeofthemis45005000,50504070,73506579,73506579,50005000,34272769,75007381,and75007381,respectively.Thenumbersofblanksizesare10,10,20,40,20,20,40,and80respectively.AsmentionedinSection3.6,theTSECalgorithmsactuallygeneratetwoandthree-stagepatterns.v4shouldnotbesmallerthanv2foranyproblem,forthatitisthevalueoftheoptimalthree-stagedpattern.FromTable6weknowthatv4v2forproblemsU1,U2andW1.Therefore,wecanconcludethattheauthormadesomeerrorsinpresentingthecomputationalresultsin8.Tosupportthisconclusion,thetwo-sectionpatternsofthesethreeproblemsaregiveninFigs.68,andtheblankdataincludedareasfollows(forproblemsU1andU2:blankidnumberoftheblanklengthwidth;forproblemW1:blankidnumberoftheblanklengthwidthvalue):U1: 194371490,320237932,1020659921,U2: 3129321107,42598732,575691321,721248747,W1: 1754377312223,915985621564.4.4. ComparisonbetweentheTSECandtheFZalgorithmsBoth the TSEC and the FZ 9 algorithms will generate optimal two-section patterns. The TSECmaybeseenasanimprovedversionoftheFZ.ThethreetechniquesmentionedinSection3.4arenotused by the FZ.We used test problems of Group 8 to test the TSEC and FZ algorithms. The sheetsize is 8000 6000. The blank data are the same as Group 6. The average material utilization is99.98%, which is the same for the two algorithms, because both of them can generate optimal two-section patterns.The average computation time for one problem is 16.23s for the FZ, 1.98s for theTSEC_G. The average number of knapsack problems solved for one problem is 22,787 for the FZ,9542 for the TSEC_G. The average number of strips considered in solving a knapsack problem re-latedtoasectionis30fortheFZ,1.75fortheTSEC_G.WhentheTSEC_Uisapplied,theaveragecomputation time is 0.15s. The average material utilization is 99.97%, which is nearly the same asthat of the TSEC_Gor FZ. Both the TSEC_Gand the TSEC_U are much more time efcient thantheFZ.Y.Cuietal./Computers&OperationsResearch33(2006)15051520 1517Fig.6.ThepatternofproblemU1.Fig.7.ThepatternofproblemU2.BelowwegivethesolutionstotheproblemsinGroup9,whichmaybeusedbyfutureresearchersorpractitionerstotesttheiralgorithms.Thisgroupincludes12problems.Thesheetsizeis80006000.TherstsixproblemsarethoselistedinTable4.ProblemsP7P12areformedbycombiningtheblank1518 Y.Cuietal./Computers&OperationsResearch33(2006)15051520Fig.8.ThepatternofproblemW1.Table7ThecomputationalresultsofGroup9ID m v1v2v3t1t2t3P1 30 47993491 47993491 47992398 21.17 2.01 0.16P2 30 47991116 47991116 47991116 17.49 2.07 0.15P3 30 47987624 47987624 47983659 14.56 1.80 0.16P4 30 47993588 47993588 47993588 18.15 2.00 0.15P5 30 48000000 48000000 48000000 13.87 2.16 0.16P6 30 47997600 47997600 47997600 19.37 2.13 0.16P7 60 48000000 48000000 48000000 38.41 5.91 0.36P8 60 47998064 47998064 47998064 36.94 6.08 0.37P9 60 48000000 48000000 48000000 39.72 6.06 0.35P10 90 48000000 48000000 48000000 50.79 10.52 0.56P11 90 48000000 48000000 48000000 56.15 10.50 0.54P12 180 48000000 48000000 48000000 71.34 19.02 1.10dataoftwoormoreproblemsfromtherstsix.Namely,ProblemID P7 P8 P9 P10 P11 P12Blankdata P1+P2 P3+P4 P5+P6 P1+P2+P3 P4+P5+P6 P1+P2+P3+P4+P5+P6ThecomputationalresultsaresummarizedinTable7,wherev1andt1arethevalueandcomputationtimeoftheFZ,v2andt2arethoseoftheTSEC_G,v3andt3arethoseoftheTSEC_U.Y.Cuietal./Computers&OperationsResearch33(2006)15051520 15195. ConclusionsTheTSECmaygenerateoptimaltwo-sectionpatterns,whichareeithertwo-stageorthree-stagepat-terns. For the small-scale problems tested, the TSEC can solve most of them to optimality, and thesolutionsarenotinferiortothoseoftheoptimalthree-stagepatterns.Formedium-scaleproblems,theTSECcangivesolutionsveryclosetooptimal.FortheproblemsofGroup6,theaveragematerialutilizationisveryclosetooptimal(99.64%vs.99.74%),superiortothatoftheoptimaltwo-stagepatterns(99.64%vs.99.44%),andveryclosetothatoftheoptimalthree-stagepatterns(99.64%vs.99.66%).TheaveragecomputationtimeismuchmoreshorterthanthoseoftheB_OPTandB_3STG.Fortheeightlarge-scaleproblemstested(Group7),theTSECgivessolutionsnotinferiortothoseoftheH_3STG.AlthoughtheTSECwasexecutedonacomputerwithaclockrate19timesofthatusedbyHiff8(1.9GHzvs.0.1GHz),wemaystillinferthatitismoretimeefcientthantheH_3STGfromthehugedifferenceincomputationtimeshowninTable6.ApplyingthethreetechniquesdiscussedinSection3.4makestheTSECmuchmoretimeefcientthan the FZ. These techniques can also be used to improve the H_3STG. We have actually devel-oped an algorithm based on these techniques, which is able to generate optimal three-stage patternsefciently.AcknowledgementsGuangxiScienceFoundationsupportsthisprogramunderthegrantNo.0236017.Theauthorswishtoexpresstheirappreciationtothesupporter.Theauthorsarealsogratefultotheanonymousrefereewhosecommentshelpedtoimproveanearlyversionofthispaper.References1 Young-GunG,KangM-K.Anewupperboundforunconstrainedtwo-dimensionalcuttingandpacking.JournaloftheOperationalResear
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 美術四分鐘技能展示課件
- 電網配電運維工崗位職責
- 生產經營單位安全培訓方案
- 安全生產工作 報告
- 裝修安全生產管理制度范文
- 安全幼兒園心得體會
- 河南信陽火災事故調查報告
- 棉紡織企業(yè)安全生產規(guī)程
- 環(huán)氧樹脂產品培訓課件
- 美麗鄉(xiāng)村政策培訓課件
- DB64∕T 2131-2025 建筑施工非常規(guī)高處吊籃施工規(guī)程
- 醫(yī)院關于開展整治重復醫(yī)療檢查檢驗、違規(guī)收費問題工作實施方案的通知
- 2024年湖北省普通高中學業(yè)水平合格性考試數學試題(原卷版)
- 常州市鐘樓區(qū)社區(qū)專職工作者招聘筆試真題2024
- 2025至2030年中國轎車輪轂造型線模具市場分析及競爭策略研究報告
- 2024年安徽中醫(yī)藥高等??茖W校招聘考試真題
- 2025屆吉林省長春市朝陽區(qū)英語八下期末學業(yè)水平測試模擬試題含答案
- 2025年變電站春季安全生產自查報告
- 2025至2030汽車車輪行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 個人信息保護合規(guī)審計師CCRC-PIPCA含答案
- 供應商黑名單管理制度
評論
0/150
提交評論