外文翻譯基于機器視覺的水果的識別和定位.pdf_第1頁
外文翻譯基于機器視覺的水果的識別和定位.pdf_第2頁
外文翻譯基于機器視覺的水果的識別和定位.pdf_第3頁
外文翻譯基于機器視覺的水果的識別和定位.pdf_第4頁
外文翻譯基于機器視覺的水果的識別和定位.pdf_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

Z.Panetal.(Eds.):ICAT2006,LNCS4282,pp.785795,2006.Springer-VerlagBerlinHeidelberg2006RecognitionandLocationofFruitObjectsBasedonMachineVisionHuiGu,YayaLu,JilinLou,andWeitongZhangInformationEngineeringCollege,ZhejiangUniversityofTechnology,310014,Hangzhou,C,oo327,phonixlou,Abstract.Thispaperdiscussedthelowlevelmachinevisiononfruitandvegetableharvestingrobot,introducedtherecognitionandlocationoffruitandvegetableobjectsundernaturescenes,putforwardanewsegmentationmethodcombinedwithseveralcolormodels.Whatsmore,itpresentedanovelconceptionforthedeterminationoftheabscissionpoint,successfullyresolvedthelocationofcenterandabscissionpointwhenthefruitwerepartiallyoccluded.Meanwhile,bythetechniqueofgeometry,itsettledthelocationsoftheabscissionpointwhenthefruitgrewaskew.Itprovedgoodeffectunderthenaturescene.Keywords:Machinevision,fruitobject,recognition,location.1IntroductionDuringtheprocessofhumanconqueringtheNature,rebuildingtheNatureandpromotingthesociety,humansarefacingtheproblemofabilitylimitation.Asaresult,humanshavebeenseekingfortherobotstosubstitutethemantocompletecomplicatedtasks,andtheintelligentrobotisthebestchoice.Asweallknow,visionisthemainwayofhumansapperceivingtheworld.About80%informationisgotthroughvision.So,itisvitaltograntvisionfunctionforintelligentrobots.Here,wecandefinethemachinevisionasfollows:itisabletoproducesomedescriptionaboutthecontentoftheimageafterprocessingtheinputimage1.Therearemanyfieldsrelatedwithmachinevision.So,italsohasawideapplicationinvariousaspects,frommedicalimagetoremotesensedimage,fromindustrialinspectiontoagriculturalareas,etc.Thefruitandvegetableharvestingrobotwhichwearegoingtodiscussisonekindofautomaticmechanicalharvestingsystemspossessingtheperceptiveability,canbeprogrammedtoharvest,transferandpackthecrops2.Duringtheprocessofharvesting,thechiefproblemofthevisionsystemistorecognizeandlocatethefruitobject3.Here,recognitionmeanssegmentationofthefruitobjectsfromthecomplicatedbackground4.Andlocationincludestwoaspects:locationofthefruitcenterandabscissionpoint.786H.Guetal.Recently,thereremanyresearchesaboutfruitandvegetableharvestingrobotbasedonmachinevision56.CaiJian-rongpresentedthemachinevisionrecognitionmethodsunderthenaturescene.UsingtheOtsualgorithm,itgotthesegmentationthresholdautomaticallyandextractedthetarget7.Miyanagaintroducedtheseedinggraftingtechniquebasedonmachinevisionandtherobotinventedbythemhasbeenputintoproduction8.SlaughterD.Csetuponeorangeclassiermodelbyusingthecolorfeatureinthechromaticdigitalimage9.Amongtheseresearches,therehavebeenmanymethodsofextractingthefruitsfromcomplicatednaturescene.Butthebasicconceptionisextractingthefruitobjectbyconvertingonecolormodeltoanotheronewhichiseasiertoprocessormuchmoresuitableforthecase.However,still,therearetwoproblemsremainunsettled:1)Howtodeterminetheabscissionpointwhenthefruitsgrowaskew;2)Howtodeterminethecenterandabscissionpointwhentherearesomanyfruitoverlappedeachotherthatitisimpossibletodetectthewholeedge.Ifbothoftheproblemsremainunsettled,itmeanstheharvestingmaybeafailure.And,whatismoreimportant,thereisonlyabout40%ofthefruitandvegetableisvisibleintheorchard10,whichmeansabout60%objectsarepartiallyoccludedorcompletelyoccluded.Generally,theagriculturalrobotsarefitwithfanssoastoblowtheleavescoveringthefruit.So,forthefruitoccludedcompletely,itmaybepartiallyresolvedinthisway.So,inthepaper,weonlydiscussedtheproblemofthefruitpartiallyoccluded,inparticular,thecasethatonefruitoverlapanotherone.Asawhole,theproblemwearetodiscussbelongstothelowlevelmachinevision,andisoneofthekeystepsinthemachinevision.2MethodologyUsedinthePaper2.1MainIdeaFromtheanalysisabove,weknew,inordertosegmentthefruitfromleavesandbranches,weshouldusecolormodelsuitscertainsituations.TheRGBcolormodelcommonlyusedisnotsuitablefortheorchardimages.BecauseinRGBcolorspace,thetricolor(RGB)notonlyrepresentthehuevalue,butalsorepresentthebrightness.So,thechangeoftheoutwardilluminationmayaddthedifficultyoftherecognition,soRGBisundependableintheprocessofthesegmentation.Inordertomakeuseofthefruitsclusteringfeatureinhuespace,weneedtoseparatethehueandbrightnessinformation.WecanachievethisgoalbytransferringtheRGBtothemodelswhichseparatehueandbrightness.2.2ColorModelsWeusethreetypesofcolormodelsinthepaper.ThefirstoneisLCD(luminanceandcolordifference)model.Therearefourcolorattributesinthismodel,includingbrightnessinformationY,colordifferenceofred,Cr,colordifferenceofgreenCg,colordifferenceofblueCb.Thetransformformulaisasfollows:RecognitionandLocationofFruitObjectsBasedonMachineVision787=+=YBCYGCYRCBGRYbgr114.0587.0299.0.(1)Duringtheprocessofexperiment,wefoundthatthecolordifferenceofredoffruitismuchhigherthanthatofleavesorbranches,eventheunripefruit,suchasunripetomatothatwouldbereferredlater.SoweonlyhavetoconsideraboutthecolordifferenceofredCr.ThesecondmodelweusedisNormalizedRGB.Thediagramwasusedtorepresentthecolorpropertiesofthethreeportions.Thetransformformulaisdefinedasfollows:+=+=+=)/()/()/(BGRBbBGRGgBGRRr.(2)itisobviousitsatisfies:1=+bgr.Combinedtheadvantagesoftheabovetwomodels,wecanconcludethethirdcolormodelcalledLHMinthispaper.ChoosingYandCrfromthefirstcolormodel,randgfromthesecondmodel;wecanconstructtheformulaasfollow:+=+=+=)/()/(114.0587.0299.0BGRGgBGRRrYRCBGRYr.(3)3SegmentationUnderthenaturesceneoftheorchard,thefactorscontainingthenon-uniformillumination,theocclusionoftheleafandbranchallmakeitmoredifficulttosegment.Atpresent,wecanclassifythechromaticimagesegmentationintothreeclasses:(1)Segmentationbasedonthreshold;(2)Segmentationbasedonedgeinspectingandareagrowing;(3)Segmentationbasedoncolorclustering11.3.1ClusteringandClassifierTheprimaryconceptionofclusteringistodistinguishthedifferentobjectswhichincludedifferentclassesofobjectsanddifferentpartsofthesameobject12.Allclassificationalgorithmsarebasedontheassumptionthattheimageinquestiondepictsoneormorefeaturesandthateachofthesefeaturesbelongstooneofseveraldistinctandexclusiveclasses.Thetraditionalwayofclassifiercomprisestwophasesofprocess:trainingandtesting.Intheinitialtrainingphase,characteristicpropertiesoftypicalimagefeaturesareisolatedand,basedonthese,auniquedescriptionofeachclassificationcategory,i.e.trainingclass,iscreated.Inthesubsequenttestingphase,thesefeature-spacepartitionsareusedtoclassifyimagefeatures.788H.Guetal.Intheexperiment,wesampled60pixelsofleaf,branch,andfruitrespectivelyandconstructedaclassifier.Adoptingtwofeaturepatternsmandn,weformedthedecisionfunctions:cbnamnmf+=),(,wherea,b,andcarearbitraryconstantsaslongasthepointsonthelinesatisfiesthecondition0),(=nmf.Here,featurepatternmaybecolor,shape,size,oranypropertiesoftheobjects.Accordingtothedecisionfunctions0),(nmfor0),(nmf,wecandividetheimageintotwopartsasshowninFig1:.Fig.1.Modelofclassifier3.2SegmentationoftheFruitObjectsInthisstudy,weadoptedthesegmentationmethodofseveralthresholds.Thethresholdsarederivedfromtheabovethreemodelsoftheimageusingthedecisionfunctions.Accordingtotheaboveparagraphs,wecouldgetthreedecisionfunctions:thefirstfunction,F1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論