版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、第十四章整式的乘法及因式分解專題訓(xùn)練一、同底數(shù)冪的乘法。1、同底數(shù)冪相乘,不變,;2、計(jì)算工式:aman=a()(m,n都是);3、計(jì)算:( 1)、x2 x3( 2)、 a a6( 3)、( 2)( 2) 5( 2) 5( 4)、 mx-2 m2-x ( 5)、 - x 5x 3x10 ( 6)、 10x 1000( 7)、 3( 3) 2 ( 8)、 3 105 2 106 (9)、 8( 26)二、冪的乘方。1、冪的乘方,不變,(3、計(jì)算:( 1)、( 103)6( 2)、( a4) 2)相乘;( m、 n 都是(3)、( am) 10);(4)、(x4) 5( 5)、( a4)4(6)、
2、( a2) 3 a5 ( 7)、( x4) 2 ( 8)、( x2) 2三、積的乘方。1、積的乘方,等于把積的每一個(gè)因式分別,再把所得的冪。2、計(jì)算公式:(ab) n=a()b()( n為正整數(shù));3、計(jì)算:( 1)、( 2a) 2( 2)、( 5b)3( 3)、( x2y )3(4)、( 3m2) 3( 5)、( x2y3z5) 2( 6)、( 1/2xy ) 3(7)、( 2ab2) 3 ( 8)( pq) 3四、整式的乘法。(一)、單項(xiàng)式單項(xiàng)式。1、運(yùn)算法則:單項(xiàng)式與單項(xiàng)式相乘,把它們的對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,則連同它的、 分別相乘,作為積的一個(gè)因式。2、舉例: 2xy 3x2
3、y2 z =( 2 3)( x x2)( yy2)z 6x1+2y 1+2z=6x3y3 z(請(qǐng)同學(xué)們按上面舉例的格式進(jìn)行計(jì)算)2345(2)、3x2( 6xy22( 1)、 8mn3mn ;) ; ( 3)、( 5a b)( 4a)( 4)、3x26x 2( 5)、 4y ( 2xy 2) ( 6)、( 3x )2 5x3( 7)、( 2a2bc) 3( 3ab2)2 (8)、( 2x )( 6xy 2)(二)、單項(xiàng)式多項(xiàng)式。1、單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的得的積。原來的多項(xiàng)式有幾項(xiàng),結(jié)果就是幾項(xiàng)。,再把所2、舉例:3x(2x+y ) =(3x 2x) +( 3x y )=6
4、x2+3xy(請(qǐng)同學(xué)們按上面舉例的格式進(jìn)行計(jì)算)( 1)、( 5a)(3a2 +1) ( 2)、 2a(5a-2b ) (3)、( x-2y )( 6x)( 4)、ax2( ax+b )2( 5)、 x( x-1 ) +4x( x+1)-3x ( 2x-3 )( 6)、 ab2( 3a2b abc - 1);( 7)、( 4x2 +3)( x2y) 3(三)、多項(xiàng)式多項(xiàng)式。1、多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的的,再把所得的積。乘另一個(gè)多項(xiàng)式2、舉例:( 3x+1 )( x+3 )( 3x x) +( 3x3) +( 1x)( 1 3) 3x2 + 9x + x + 3 = 3x 2 +10
5、x +33、計(jì)算:( 1)、( x 8y)( x y)( 2)、(x+y )( x2 xy+y 2)( 3)、( 2x+1 )(x+4 ) ( 4)、( m+2n)( 4n m);( 5)(a 1) 2;( 6)、( x+2y )(x 2y) ;( 7)、( 3m2 n)( n 1);( 8)( y5)( y+3 )五、同底數(shù)冪的除法及多項(xiàng)式除以單項(xiàng)式。1、同底數(shù)冪相除,底數(shù),指數(shù);2、任何不等于0 的數(shù)的 0 次冪都等于;3、單項(xiàng)式相除,把系數(shù)與同底數(shù)冪分別被除式里含有的字母,則連同它的指數(shù)作為4、多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)作為商的因式,對(duì)于只在一個(gè)因式;這個(gè)單項(xiàng)式,再把所行的
6、商。5、計(jì)算:( 1)、x8 x3 ;( 2)、( ab) 5( ab) 2;( 3)、( a)12( a) 58( 4)、m2m;6 3(5)、(xy)(xy);7(6)、n(5n)( 7)、10ab3 ( 5ab) ;( 8)、 8a2b3 6ab 2( 9) 6x2 3xy( 10)、 21x2y4 ( 3x2 y3 ) ; ( 11)、(6 109)( 2 105)( 11)、( 6ab5a) a; ( 12)、(12x 210xy 2) 4xy( 13)、( a3) 2( a2) 3 ; (14)、(ab2)3 ( ab)2222( 15)、( 6x332( 15)、 7m( 4mp
7、) 7m;-8x)( 2x)六、乘法公式。1、平方差公式:兩個(gè)數(shù)的與這個(gè)兩數(shù)的的,等于這兩個(gè)數(shù)的;(a b)( a-b ) =;2、能用平方差公式運(yùn)算的三個(gè)條件:第一,多項(xiàng)式必須是這個(gè)多項(xiàng)中的每一項(xiàng)都能夠?qū)懗赡硵?shù)或某式的,第二,;第三,這個(gè)多項(xiàng)式中,兩項(xiàng)的符號(hào)必須;3、完全平方公式:兩個(gè)數(shù)的的平方,等于它們的,加上(或減去)它們積的。(a b) 2,( a-b )2 =;4、用完全平方公式運(yùn)算時(shí)的符號(hào):如果所給二項(xiàng)式中等號(hào)相同,則結(jié)果里的三項(xiàng)符號(hào)都是正的;如果所給二項(xiàng)式的符號(hào)相反,則結(jié)果中“2ab”項(xiàng)的符號(hào)為負(fù)的。5、計(jì)算:( 1)(2x 2)(2x 2);( 2)、( x 2y)( x-2y
8、 );( 3)、( a+3b)(a-3b ) ; (4)、( 2+3a)( -2+3a ) ; (5)、 5149;( 6)、( xy 1)( xy 1); ( 7)、(3a 2b)( 2b 3a);( 8)、1001 999;( 9)、10298;( 10)、x3 yxy 3( 11)、( 2x 3)( 2x 3)( x2y)( x2y)( 12)、( x+3)2; (13)、( y-5 )2; ( 14)、( 2x+3 )2; (15)、 632;( 16)、 982;( 17)、(3x-5 ) 2 - (2x+3 ) 2; ( 18)、 482;( 19)、先化簡,再求值。x2( x 2
9、) x (x 3 x 1) , 其中 x=2( 2x3y )2( 2x y)(2x y) , 其中 x=1,y=2七、因式分解。1、我們把一個(gè)化成的形式,像這樣的式子變形叫做因式分解。因式分解與整式的乘法是互逆運(yùn)算。例如(x+1)( x-1 ) x2 1,這樣是整式的乘法,而x21( x+1)( x-1 )這樣就是。因式分解。2、提公因式法:一般地,如果多項(xiàng)式的各項(xiàng)有公因式,可以把這個(gè)公因式提取出來,將多項(xiàng)式寫成與的形式,這種分解因式的方法叫做提公因式法。3、多項(xiàng)式能用平方差公式分解的結(jié)構(gòu)特征:第一、多項(xiàng)式必須是式;第二,多項(xiàng)式的兩項(xiàng)可以表示成的形式;第三、多項(xiàng)式中的兩項(xiàng)符號(hào)必須。4、多項(xiàng)式能
10、用完全平方公式分解的結(jié)構(gòu)特征: 第一、多項(xiàng)式必須是 式;第二,多項(xiàng)式的兩項(xiàng)可以表示成 的形式,且符號(hào) ;第三,第三項(xiàng)是前兩項(xiàng)的 2 倍,符號(hào)可正可負(fù);5、對(duì)多項(xiàng)式進(jìn)行分解因式思路:第一,先考慮是否可以提取公因式;第二,觀察多項(xiàng)有幾。如果是二項(xiàng)式,考慮能不能用平方差公式進(jìn)行分解;如果是三項(xiàng)式,考慮能不能用完全平方公式進(jìn)行分解,再考慮用十字相乘法進(jìn)行分解。6、分解因式時(shí)一定要注意,必須進(jìn)行到每一個(gè)多項(xiàng)式因式都不能再分解為止。7、計(jì)算:(一)、請(qǐng)用提公因式法進(jìn)行分解因式:ax+ay3mx-6my8m2 n+2mn12xyz-9x2y22a( y-z ) -3b ( z-y )534+334-2 3410abc-2bc2m( a-3 ) +2( 3-a )(二)、請(qǐng)用公式法進(jìn)行分解因式:x2y-4y -a4+16 9a2-4b 21-36m2 0.36p2-121 x2+y2-2xy1+10a+25a225m2-80m+643ax2-3ay 2a2-2a+14m2-4m+17582-258 2( a-b )2 +4ab4xy2-4x 2y-y 3-3m2+6mn-3y2x4-y 41-x2y2( 3a-b )2- (a-3b
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題申報(bào)參考:累積生態(tài)風(fēng)險(xiǎn)對(duì)農(nóng)村婦女抑郁癥狀的作用機(jī)制及風(fēng)險(xiǎn)分級(jí)干預(yù)研究
- 科技助力冠心病患者的生活質(zhì)量提升
- 探索未知領(lǐng)域科技前沿的創(chuàng)新與突破
- 寵物藥品的寵物醫(yī)療技術(shù)創(chuàng)新與國際合作機(jī)會(huì)挖掘考核試卷
- 2024年廣西公務(wù)員申論考試真題及答案-A卷
- 2025年滬教版高二數(shù)學(xué)上冊月考試卷
- 2025年人教新起點(diǎn)選修1歷史上冊月考試卷含答案
- 2025年粵教新版九年級(jí)地理上冊月考試卷
- 2025年人教五四新版七年級(jí)生物上冊階段測試試卷
- 2025年蘇人新版七年級(jí)生物上冊月考試卷含答案
- 江蘇省蘇州市2024-2025學(xué)年高三上學(xué)期1月期末生物試題(有答案)
- 銷售與銷售目標(biāo)管理制度
- 人教版(2025新版)七年級(jí)下冊英語:寒假課內(nèi)預(yù)習(xí)重點(diǎn)知識(shí)默寫練習(xí)
- 2024年食品行業(yè)員工勞動(dòng)合同標(biāo)準(zhǔn)文本
- 2025年第一次工地開工會(huì)議主要議程開工大吉模板
- 全屋整裝售后保修合同模板
- 高中生物學(xué)科學(xué)推理能力測試
- GB/T 44423-2024近紅外腦功能康復(fù)評(píng)估設(shè)備通用要求
- 2024-2030年中國減肥行業(yè)市場發(fā)展分析及發(fā)展趨勢與投資研究報(bào)告
- 運(yùn)動(dòng)技能學(xué)習(xí)
- 2024年中考英語專項(xiàng)復(fù)習(xí):傳統(tǒng)文化的魅力(閱讀理解+完型填空+書面表達(dá))(含答案)
評(píng)論
0/150
提交評(píng)論