版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、大連交通大學2011屆本科生畢業(yè)設計(論文)外文翻譯 welding simulation of cast aluminium a356x-t. pham*, p. gougeon and f-o. gagnonaluminium technology centre, national research council canada chicoutimi, quebec, canadaabstract welding of cast aluminium hollow parts is a new promising technical trend for structural assembli
2、es. however, big gap between components, weld porosity, large distortion and risk for hot cracking need to be dealt with. in this paper, the mig welding of aluminium a356 cast square tubes is studied. the distortion of the welded tubes was predicted by numerical simulations. a good agreement between
3、 experimental and numerical results was obtained. introductionaluminium structures become more and more popular in industries thanks to their light weights, especially in the automotive manufacturing industry. moreover, welding of cast aluminium hollow parts is a new promising technical trend for st
4、ructural assemblies 1-3. however, it may be very challenging due to many problems such as big gap between components, weld porosity, large distortion and risk for hot cracking 4,5. due to local heating, complex thermal stresses occur during welding; residual stress and distortion result after weldin
5、g. in this paper, the aluminium a356 cast tube mig welding is studied. the software sysweld 6 was used for welding simulations. the objective is to validate the capability of this software in predicting the distortion of the welded tubes in the presence of large gaps. in this work, the porosity of w
6、elds was checked after welding using the x-ray technique. the heat source parameters were identified based on the weld cross-sections and welding parameters. full 3d thermal metallurgical mechanical simulations were performed. the distortions predicted by the numerical simulations were compared to e
7、xperimental results measured after welding by a cmm machine. experimentsexperimental setup two square tubes are made of a356 by sand casting and then machined. they are assembled by four mig welds, named w1 to w4. their dimensions and the welding configuration are depicted in figure 1. both small (i
8、nner) and large (outer) tubes are well positioned on a fixture using v-blocks as shown in figure 2. the dimensions of the tubes make a peripheral gap of 1 mm between them. this fixture is fixed on a positioner that allows the welding process to be carried out always in the horizontal position. the l
9、ength of each weld is of 35 mm. the fronius welding head, which is mounted on a motoman robot, was used for the mig welding process. table 1 indicates the parameters of the welding process for this welding configuration.table 1: mig welding parameters.voltageamperagespeedthick1thick2gap(v)(a)(m/min.
10、)(mm)(mm)(mm)232601.25441a)b)figure 1: tube welding configuration: a) cross-section view, b) tube dimensionsfigure 2: experimental setup for tube weldingtestingthe porosity of welds was observed before and after welding using the x-ray technique to check the quality of these welds according to the s
11、tandard astm e155. the whole welded tubes were then tested by traction on a mts testing machine. the final dimensions of the welded tubes are measured on a cmm machine at many points on the tubes. the distortion of the welded tubes is determined by comparing the final positions with the initial posi
12、tions of the tubes.numerical analysisin sysweld, a welding analysis is performed based on a weak-coupling formulation between the heat transfer and mechanical problems. only the thermal history will affect on the mechanical properties, but not in reverse direction. therefore, a thermal metallurgical
13、 mechanical analysis is divided into two steps. the first step is a thermal metallurgical analysis, in which the heat transferred from the welding source makes phase changes during the welding process. the results of temperature and phase changes from the first step are then used as input for the se
14、cond analysis. it is a pure thermo-elasto-plastic simulation 6.heat source model identificationbefore running a welding simulation, it is necessary to determine the parameters of the heat source model. this is called heat source fitting. actually, it is a thermal simulation using this heat source mo
15、del in the steady state, which iscombined with an optimization tool to obtain the parameters of the heat source. figure 3 presents the form of a 3d conical heat source of which the energy distribution is described in eq (1) as follows:f=q0exp(-r/r0) (1) in which q0 denotes the power density; and r,r
16、0 are defined by r=(x-x0)+(x-x0-vt) (2) and r0=re-(re-ri)(ze-z+z0)/(ze-zi) (3) where(x0,y0,z0)is the origin of the local coordinate system of the heat source; re and ri the radius of the heat source at the positions ze and zi,respectively;v the welding speed and t the time.in this study, a metallogr
17、aphic cross-section has been used to identify the heat source parameters as shown in figure 4. the use of a 3d conical heat source fits very well the weld cross-section. the mesh size in the cross-section is around 0.5 mm for this case. the finer is the mesh, the more accurate is the shape of the me
18、lting pool, but the longer is the simulation.figure 3: 3d conical heat source (sysweld).a)b)figure 4: (a) metallographic cross-section, (b) melting pool cross-section.analysis modelthe mesh of the tubes was created in hypermesh 7.0. sysweld 2007 has been used as solver and pre/post processor. a full
19、 3d thermal metallurgical mechanical analysis with brick and prism elements. two welding sequences have been done such as w1/w2/w3/w4 and w1/w3/w2/w4. the tubes are clamped using four v-blocks during the welding, two for each tube. in the simulations, the positions where the tubes are in contact aga
20、inst the surfaces of the v-blocks are considered as fixed conditions (i.e. ux = uy = uz = 0). in the release phase, the tubes are free from the v-blocks. resultsthe distortion of the welded tube is measured when it is released from the constraints. the distortion is determined by measuring the displ
21、acement of the small tube on the top and lateral surfaces along the centre line of the tube. these measures are relative to the large tube. figures 5a-b depict the distortion predicted by the numerical simulations of the sequence w1/w2/w3/w4 and w1/w3/2/w4, respectively. good agreements between expe
22、rimental and numerical results were obtained in the two welding sequences as indicated in tables 2-3, in both the distortion tendency and distortion range of the process variation. a)b)figure 5: tube distortion (norm u): (a) sequence w1/w2/w3/w4, (b) sequence w1/w3/w2/w4.table 2: distortion result c
23、omparison (welding sequence w1/w2/w3/w4) displacements(mm)uyuzexperimrntalfrom-0.4to-0.59from-0.35to-0.513d simulation-0.4-0.51table 3: distortion result comparison (welding sequence w1/w3/w2/w4)displacements(mm)uyuzexperimrntalfrom-0.07to-0.11from-0.12to-0.213d simulation-0.05-0.26a)b)figure 7: sta
24、te of stresses sxy (a) clamped, (b) released. (red = positive, blue = negative)a)b)figure 8: state of stresses sxz (a) clamped, (b) released. (red = positive, blue = negative)figures 6-8 shows the state of the stresses of the welded tubes at room temperature for the sequence w1/w2/w3/w4 after weldin
25、g when clampled and released from constraints (x is the direction along the axe of the welded tube). to show how the welded tube is distorted, positive-negative values are used instead of the true values of stresses. the distortion of the welded tube can be explained as the new equilibrium position
26、due to the residual stresses when there is no external load. it is remarked that in the presence of large gaps, the distortion of the welded tube is very likely in the rotational mode around local welds.conclusionsthe mig welding is very good for assembling aluminium cast tubes (hollow parts) in the
27、 presence of large gaps. the 3d thermal metallurgical mechanical simulation of the cast tube welding using sysweld has been validated. a very good agreement between numerical and experimental results was obtained for both the distortion tendency and distortion range. the welding sequence has a major
28、 influence on the distortion of the welded structure. it turns out that the optimization of the welding sequences for a reasonable distortion of a welded structure with a large number of welds becomes very important. acknowledgmentsthe authors would like to thank gratefully rio tinto alcan and gener
29、al motor for financial and technical supports, particularly martin fortier and pei-chung wang. also, the authors are grateful to welding team at atc (audrey boily, martin larouche, franois nadeau and mario patry) for experimental works.references1. k-h. von zengen, aluminium in future cars a challen
30、ge for materials science, materials science forum, 519-521 (part 2), 1201-1208 (2006). 2. s. wiesner s., m. rethmeier and h. wohlfart, mig and laser welding of aluminium alloy pressure die cast parts with wrought profiles, welding international, 19 (2), 130-133 (2005). 3. r. akhter, l. ivanchev, c.v
31、.rooyen, p. kazadi and h.p. burger, laser welding of ssm cast a356 aluminium alloy processed with csir-rheo technology, solid state phenomena, 116-117, 173-176 (2006). 4. j.f. lancaster, metallurgy of welding, abington publishing (1999). 5. . grong, metallurgical modelling of welding, the institute
32、of materials (1997). 6. sysweld, sysweld reference manual, esi group (2005). 譯文鑄造a356鋁合金的焊接模擬x-t. pham*, p. gougeon and f-o. gagnon aluminium technology centre, national research council canada chicoutimi, quebec, canada摘要:空心鋁鑄造件的焊接是一個很有前途的新結構組件技術的趨勢。然而,組件之間的差距較大,焊接孔隙度,大變形和熱裂需要處理的風險。在這篇文章中,對鑄造a356鋁合
33、金的方管的mig焊接進行了研究。并對焊接管彎曲變形進行了數(shù)值模擬預測。實驗結果和數(shù)值模擬結果的相似度很高。1前言:由于鋁合金結構自身的重量輕,所以它變得越來越流行,尤其是在汽車制造業(yè)。此外,空心鋁鑄造件的焊接是一種新的有前途的結構組件技術的趨勢1-3。但是它可能有很大的挑戰(zhàn),由于大的差距,例如組件之間,焊接孔隙度,大變形和熱裂的危險等很多問題4,5。由于局部加熱,復雜的熱應力發(fā)生在焊接中;焊后會出現(xiàn)殘余應力和變形的結果。在這篇文章中,關于鑄造a356鋁合金的方管的mig焊接進行了研究。sysweld軟件6被用于焊接模擬。其目的是驗證這個軟件在大差距的焊接管扭曲變形的預測中的能力。在這項工作中,
34、在焊接后利用x射線技術來檢查焊縫的孔隙率。在熱源參數(shù)的基礎上,確定了焊縫截面和焊接參數(shù)。冶金力學的3d熱量模擬已經(jīng)被使用。用數(shù)值模擬所預測出來的扭曲值與焊后用ccm機器所測量的實驗結果進行了比較。2實驗:2.1實驗方案兩個成直角的管子是用a356通過砂型鑄造然后在加工形成的。他們是由四個管mig焊接組裝而成 ,命名為w1至w4。他們的尺寸和焊接配置描繪如圖1.不論小還是大的管子都很好的定位在一個采用v形塊的夾具上,如圖2所示。管子的規(guī)模使它們之間產(chǎn)生了一個1毫米厚的不主要的縫隙。這個夾具固定在一個定位上,使焊接過程中總是保持水平位置。每個焊縫的長度是35毫米。被安裝在motoman機器人上的f
35、ronius焊頭是用于mig焊過程中的。表1表明了這個焊接結構的焊接工藝參數(shù)。表1:mig焊接參數(shù)電壓電流速度厚板1厚板2縫隙(v)(a)(m/min.)(mm)(mm)(mm)232601.25441a)b)圖1:鋼管焊接配置:a)截面圖 b)鋼管尺寸圖2:管焊接實驗裝置2.2測試 焊接前后利用x射線技術觀察焊縫氣孔,按astm e155標準檢查這些焊縫質量。然后整個焊接管子通過一個mts試驗機上的牽引來測試。焊接管最終的尺寸被定位在管子上的多個點的cmm機器所測量。扭曲的焊接管的最終位置與初始位置的管子進行比較。 3數(shù)值分析 在sysweld軟件中,焊接分析是基于熱傳導和力學問題之間的微弱
36、鏈接而制定的。只有熱學經(jīng)歷在相同方向上才將影響力學性能 。因此,熱學冶金力學分析分為兩個步驟。第一步是一種熱學冶金分析,其中在焊接過程的相變過程中從焊接電源的熱量被轉移。第一步溫度和相變的結果將作為第二次的分析。它是一個純熱彈塑性模擬6。4熱源模型的鑒定 焊接模擬運行之前,有必要確定熱源模型的參數(shù)。這就是所謂的熱源配件。實際上,它是一種熱模擬中的穩(wěn)定狀態(tài),在這種穩(wěn)定狀態(tài)中用一種優(yōu)化工具來獲得的熱量來源的參數(shù)。圖3給出了一個三維錐形熱源形式,它的能量分布在方程中描述:舉例如下:f=q0exp(-r/r0) (1) 其中q0 表示功率密度; r,r0 被定義為:r=(x-x0)+(x-x0-vt)
37、 (2) 和 r0=re-(re-ri)(ze-z+z0)/(ze-zi) (3) 其中(x0,y0,z0)是局部坐標系原點熱源,re和 ri 在位置ze 和zi,分別為半徑熱源;v為焊接速度,t為時間。 在這項研究中,金相截面已被用來確定熱源,如圖4所示的參數(shù)。一個三維錐形熱源使用非常適合的焊接橫截面。在橫截面的網(wǎng)狀尺寸是這種情況下約為0.5毫米。越細的網(wǎng)狀,越是更準確的熔池形狀,但不再是模擬。圖3:三維錐形熱源 (sysweld).a)b)圖4: (a) 金相截面(b) 熔池截面5模型分析在hypermesh7.0上創(chuàng)建了管網(wǎng)。sysweld2007已被用來作為求解器和前后處理器。一個完整
38、的三維熱學冶金力學分析用磚和棱鏡為元素。兩種焊接序列已完成,如w1/w2/w3/w4和w1/w3/w2/w4。在焊接過程中,夾住管子的過程中使用四個v形塊,每個管子兩個。在模擬中,管子的立場是反對接觸的v形塊的表面被認為是固定的條件(如ux = uy = uz = 0)。在釋放階段,管子在v形塊中是不受力的。6結果 當焊接管子從束縛狀態(tài)被釋放時,它的變形被控制。失真是通過測量沿管子的中心線從頂部到兩側面的小管的位移。這些措施是相對于大管的。圖5a,b的描述失真通過數(shù)值模擬預測序列為w1/w2/w3/w4和w1/w3/w2/w4。在數(shù)值計算結果和實驗中獲得了良好的協(xié)議的兩種焊接順序如表2-3所示
39、,在這兩種傾向的扭曲和變形的過程中變化的范圍。a)b)圖5:電子管失真(標準u):(a)序列w1/w2/w3/w4,(b)序列w1/w3/w2/w4表2:扭曲結果的比較(焊接順序w1/w2/w3/w4) 位移 (mm)uyuz實驗-0.4至-0.59-0.35至-0.51三維模擬-0.4-0.51表2:畸變結果比較(焊接順序w1/w2/w3/w4) 位移 (mm)uyuz實驗-0.07至-0.11-0.12至-0.21三維模擬-0.05-0.26a)b)圖6:規(guī)定壓力 sxx (a)夾緊(b)放松(紅=正,藍=負)a)b)圖7:規(guī)定壓力 sxy (a)夾緊(b)放松(紅=正,藍=負)a)b)圖8:規(guī)定壓力 sxz (a)夾緊(b)放松(紅=正,藍=負) 圖6-8顯示了在夾緊和放松后的焊接在室溫的規(guī)定壓力下焊接序列w1/w
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四川省瀘縣高三三診模擬語文試卷(含答案)
- 中職班主任選手備賽七部曲匯報人王秀芳講解
- 職業(yè)溝通與禮儀健康管理系施怡寧講解
- 2025商鋪租房的合同范本
- 簡單聘用合同范本
- 2025抵押物的借款合同范本「標準版」
- 實習生用人合同協(xié)議書
- 2025三方工程合同
- 提高溝通技巧的職業(yè)培訓方案
- 安防監(jiān)控工程施工合同范本
- 三年級英語上冊整冊書單詞默寫表學生版(外研版三起)
- 六年級數(shù)學上冊100道口算題(全冊完整版)
- 如愿三聲部合唱簡譜
- 高三數(shù)學開學第一課
- 水生野生動物保護與管理
- 系統(tǒng)解剖學考試重點筆記
- 云南省地圖含市縣地圖矢量分層地圖行政區(qū)劃市縣概況ppt模板
- 暖通空調基礎知識及識圖課件
- 防滲墻工程施工用表及填寫要求講義
- 交通信號控制系統(tǒng)檢驗批質量驗收記錄表
- 校園信息化設備管理檢查表
評論
0/150
提交評論