江西省吉安市2020屆高三第一次模擬考試 數(shù)學(xué)理_第1頁
江西省吉安市2020屆高三第一次模擬考試 數(shù)學(xué)理_第2頁
江西省吉安市2020屆高三第一次模擬考試 數(shù)學(xué)理_第3頁
江西省吉安市2020屆高三第一次模擬考試 數(shù)學(xué)理_第4頁
江西省吉安市2020屆高三第一次模擬考試 數(shù)學(xué)理_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、ç2019 屆高三模擬試卷數(shù) 學(xué) ( 理 ) 試 卷本試卷分第卷(選擇題)和第卷(非選擇題)兩部分,第卷 1 至 2 頁,第卷 3 至 5 頁, 滿 分 150 分,考試時間 120 分鐘考生注意:1. 答題前,考生務(wù)必將自己的準(zhǔn)考證號、姓名填寫在答題卡上,考生要認(rèn)真核對答題卡上粘貼 的條形碼的“準(zhǔn)考證號、姓名、考試科目”與考生本人準(zhǔn)考證號、姓名是否一致2. 第 I 卷每小題選出答案后,用 2B 鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡 皮擦干凈后,再選涂其他答案標(biāo)號第卷用0.5 毫米的黑色墨水簽字筆在答題卡上作答若在試題 卷上作答,答案無效3. 考試結(jié)束,監(jiān)考員將試題卷

2、、答題卡一并收回第卷一、選擇題:(本大題共 10 小題,每小題 5 分,共 50 分,每題只有一個正確答案)1已知 i 是虛數(shù)單位,則æ1+iè 2ö÷ø2013在復(fù)平面內(nèi)對應(yīng)的點位于A第一象限 B.第二象限 C.第三象限 D.第四象限2執(zhí)行如圖所示的程序框圖,若輸入 x=2,則輸出 y 的值為 A. 5 B. 9 C. 14 D. 413設(shè)p : x2 £1, q :1 -x| x |2<0 ,則 Øq 是 pA 充分不必要條件B 必要不充分條件C 充要條件D 既不充分也不必要條件4已知 F , F 是雙曲線的兩個焦

3、點,Q 是雙曲線上任一點(不是頂點),從某一焦點引1 2分線的垂線,垂足為 P,則點 P 的軌跡是A. 直線 B. 圓 C. 橢圓 D. 雙曲線ÐF QF1 2的平5 已知函數(shù) f ( x )對定義域R內(nèi)的任意x都有 f ( x )=f (4 -x ),且當(dāng)x ¹2時其導(dǎo)函數(shù) f¢(x)滿足xf¢(x) >2 f¢( x), 若 2 <a <4則ACf (2 a ) < f (3) < f (log a )2f (log a ) < f (3) < f (2 a ) 2BDf (3) < f (l

4、og a ) < f (2 a )2f (log a ) < f (2 a ) < f (3) 26一組數(shù)據(jù)共有 7 個數(shù),記得其中有 10,2,5,2,4,2,還有一個數(shù)沒記清,但知道這組數(shù)的平均數(shù)、中 位數(shù)、眾數(shù)依次成等比數(shù)列,這個數(shù)的所有可能值的和為A. 9 B. 3 C. 20 D. -117已知以下三視圖中有三個同時表示某一個三棱錐,則不是該三棱錐的三視圖是3 3 3 3·1·1212正視圖側(cè)視圖正視圖側(cè)視圖正視圖側(cè)視圖正視圖側(cè)視圖1÷ê÷ê(cos x(0 £x < )| y |£

5、;12A B C D8如果冪函數(shù)y =x a(a ÎR )ìï圖像經(jīng)過不等式組 í4 x -3 y +4 ³0 x +y -6 £0表示的區(qū)域,則 a 的取 值范圍是ïîy ³2A -1,0)é1 ö, +¥ë2 øB(-¥,-1é1 ö, +¥ë2 øC-1,0)1 , 22D1-¥,-1 , 229 設(shè) 數(shù) 列a 的 前 n 項 和 為 nSn,a =1 , a = 1 nSn +2

6、( n -1), ( n ÎN * ) n, 若S +1S S S2 + 3 + + n -( n -1) 2 3 n2=2013,則 n 的值為A.1007 B.1006 C.2012 D.201910如圖,三棱錐 P -ABC 的底面是正三角形,各條側(cè)棱均相等, ÐAPB <60° D 、 E 分別在線段 PB 、 PC 上,且 DE /BC ,記 PD =x , DADE周長為 y ,則 y = f (x)的圖象可能是設(shè)點yyyyO x注意事項:O x O xA B第卷O xC D第卷共 3 頁,須用黑色墨水簽字筆在答題卡上書寫作答,若在試題卷上作答,

7、答案無效 二、填空題:(本大題共 5 小題,每小題 5 分,共 25 分)ì p ì-x-1(-1£x <0)ï|x |£ ï11已知實數(shù) x,y 滿足 í 2 , 則點( x, y)在函數(shù)f ( x) =í p 的圖象與坐標(biāo)軸所ï ïî î圍成的封閉圖形的內(nèi)部的概率為·2·ì-® -® -®ép ö p23R 11=12已知以 T =4 為周期的函數(shù)ïm 1 -x 2 , x &

8、#206;( -1,1f ( x ) =í ,其中 m >0 。若方程 ïî1-x-2, x Î(1,3 A3 f ( x ) =x恰有 5 個實數(shù)解,則m的取值范圍為13如圖,在扇形 OAB 中, ÐAOB =60°,C 為弧 AB 上的一個動點.若COC =xOA +y OB ,則 x +3 y的取值范圍是 14 若 函 數(shù) f ( x )BO(第 13 題)在 給 定 區(qū) 間 M 上 存 在 正 數(shù) t , 使 得 對 于 任 意 x ÎM , 有 x +t Î M, 且f ( x + t) ³

9、; f ( x),則稱 f ( x )為 M 上的 t 級類增函數(shù)。給出 4 個命題函數(shù)f ( x) =4x+x是(1,+¥)上的 3 級類增函數(shù)函數(shù)f ( x) =|log ( x -1) | 是(1,+¥)2上的 1 級類增函數(shù)若函數(shù) f ( x) =sin x +ax是 ê , +¥÷上的 級類增函數(shù),則實數(shù) a 的最小值為 2ë ø設(shè) f ( x ) 是定義 在上的函數(shù),且滿足:1.對任意 x Î 0,1 ,恒有 f ( x ) >0 ;2.對任意x , x Î0,1, 1 2f ( x )

10、 f (1 -x )恒有 + £2 ;3. 對任意 x Î R , f ( x ) f (1 -x )2 2函數(shù),則實數(shù) t 的取值范圍為 (0, +¥)。f ( x ) =11 ,若函數(shù) f ( x ) 是 f ( x + )11, +¥)上的 t 級類增以上命題中為真命題的是三、選做題:請考生在下列兩題中選一題,則按所做的一題評分。本題共 5 分 15(考生注意:請在下列兩題中任選一題作答,如果多做則按所做的第一題評分)A(不等式選講)已知函數(shù) 集是,則的取值范圍是 Rf ( x) =log ( 2 x +1 +x +2 -m)2若關(guān)于 x 的不等式

11、f ( x ) ³1的解3B ( 坐 標(biāo) 系 與 參 數(shù) 方 程 選 做 題 ) 在 極 坐 標(biāo) 系 中 , 已 知 曲 線 r c oqs+4r s iq+na=相切,則實數(shù) a 的值為_r=2 cosq與 直 線四、解答題:(本大題共 6 小題,共 75 分,其中第 1619 小題每題 12 分,第 20 題 13 分,第 21 題 14 分)16(本小題滿分 12 分)已知函數(shù) f ( x) =sinw x (w >0)在區(qū)間0,p3上單調(diào)遞增,在區(qū)間p 2p , 3 3上單調(diào)遞減;如圖,四邊形 OACB 中, a , b , c 為 ABC 的內(nèi)角 A,B,C的對邊,且

12、滿足4w-cos B -cos Csin B +sin C 3sin A cos A.C()證明:b +c =2a;()若 b =c OA =2OB =2,設(shè) ÐAOB =q, ,求四邊形 OACB(0 <q<p), 面積的最大值.BOqA·3· nnn2 222yP17(本小題滿分 12 分)某商場共五層,從五層下到四層有 3 個出口,從三層下到二層有 4 個出口,從二層下到一層有 4 個出口,從一層走出商場有 6 個出口。安全部門在每層安排了一名警員值班,負(fù)責(zé)該層的安保工作。 假設(shè)每名警員到該層各出口處的時間相等,某罪犯在五樓犯案后,欲逃出商場,各

13、警員同時接到指1令,選擇一個出口進行圍堵。逃犯在每層選擇出口是等可能的。已知他被三樓警員抓獲的概率為 。9()問四層下到三層有幾個出口?()天網(wǎng)恢恢,疏而不漏,犯罪嫌疑人最終落入法網(wǎng)。設(shè)抓到逃犯時,他已下了x層樓,寫出x的 分布列,并求 E x 。18(本小題滿分 12 分)如圖,直角梯形 ABCD 與等腰直角三角形 ABE所在的平面互相垂直AB CD , AB BC ,AB =2CD =2 BC, EA EBEBACD()求直線 EC 與平面 ABE所成角的正弦值;()線段 EA上是否存在點 F,使EC/ 平面 FBD?若存在,求出EFEA;若不存在,說明理由19(本小題滿分 12 分)3

14、+( -1) n已知 n ÎN *,數(shù)列 d 滿足 d = ,數(shù)列 a 滿足 a =d +d +d +×××+d;又知數(shù)n 1 2 3 2 n列 b中,b =2 ,且對任意正整數(shù) m, n , b m =b n .n 1 n m()求數(shù)列 a 和數(shù)列 b 的通項公式;n n()將數(shù)列 b 中的第 a 項,第 a 項,第 a 項, ,第 a 項,刪去后,剩余的項按n 1 2 3 n從小到大的順序排成新數(shù)列c,求數(shù)列c的前2013 項和.n n20(本題滿分 13 分)2如圖,F(xiàn) ,F(xiàn) 是離心率為 的橢圓1 2x 2 y 2C: + =1 (ab0)的左、右

15、焦點,直線 l a 2 b21:x 將線段 F F 分成兩段,其長度之比為 1 : 3設(shè)1 2A,B 是 C 上的兩個動點,線段 AB 的中點 M 在直線 l 上,線段 AB 的中垂線與 C 交于 P,Q 兩點 () 求橢圓 C 的方程;() 是否存在點 M,使以 PQ 為直徑的圓經(jīng)過點 F ,若存在,求出 M 點坐標(biāo),若不存在,請說明 理由BM·4·AF1O F2xQ221(本小題滿分 14 分)已知函數(shù) f ( x ) =a ln( x +b ) ,g ( x ) =aex-1(其中 a ¹0 ,b >0 ),且函數(shù) f ( x ) 的圖象在點A(0,

16、f (0) 處的切線與函數(shù) g ( x) 的圖象在點 B (0, g (0) 處的切線重合 ()求實數(shù) a,b 的值;x -m()若 $x ,滿足 0 0 g ( x ) +10一、選擇題> x ,求實數(shù) m 的取值范圍;02019 屆高三模擬試卷 數(shù)學(xué)(理)試卷參考答案題號 1 2 3 4 5 6 7 8 9 10 答案 C D C B C C D B A C 二、填空題11、34 p12、 (153, 7)13、 1, 314、 15、A:m £-12;B: 或-8三、解答題16解:()由題意知:2p 4p=w 3,解得:w=32, 2 分sin B +sin C 2 -

17、cos B - cos C=sin A cos A sin B cos A +sin C cos A =2sin A - cos B sin A - cos C sin A sin B cos A +cos B sin A +sin C cos A +cos C sin A =2sin A sin( A +B ) +sin( A +C ) =2sin A4 分 sin C +sin B =2sin A Þ b +c =2 a6 分()因為b +c =2 a,b =c,所以a =b =c,所以 ABC為等邊三角形SOACB=SDOAB+SDABC1 3 = OA ×OB si

18、n q + AB2 428 分·5·nx=sin q- 3 cos q+5 34=2sin (q-p 5 3) +3 4,10 分qÎ(0 ,p),p p 2p q- Î(- , ),3 3 3當(dāng)且僅當(dāng)p p q- = ,即3 2q=5 p6時取最大值,S的最大值為 2 + OACB5 3412 分17解:(1)設(shè)四層下到三層有 個出口,恰好被三樓的警員抓獲,說明五層及四層的警員均沒有與 他相遇。1 1 1 1 (1 - )(1 - ) ´ = ,解得 n =3 3 分3 n 4 9(2) 可能取值為 0,1,2,3,4,5p(x=0) =1

19、1 1 2 , p(x=1) =(1 - ) ´ =3 3 3 9p(xp(xp(x1 1 1 1=2) =(1 - )(1 - ) ´ =3 3 4 91 1 1 1 1=3) =(1 - )(1 - )(1 - ) ´ =3 3 4 4 121 1 1 1 1 1 =4) =(1 - )(1 - )(1 - )(1 - ) ´ =3 3 4 4 6 24p(x1 2 1 1 1 5 =5) =1 - - - - - =3 9 9 12 24 248 分所以,分布列為x0 1 2 345p13291911212452410 分Ex1 2 1 1 1 5

20、 137 =0 ´ +1´ +2 ´ +3 ´ +4 ´ +5 ´ =3 9 9 12 24 24 7212 分18解:(1)解法 1:因為平面 ABE 平面 ABCD ,且 AB BC所以 BC平面 ABE ,則 ÐCEB 即為直線 EC 與平面 ABE 所成的角2 分設(shè) BC=a,則 AB=2a, BE =2a ,所以 CE = 3aCB 1 3則直角三角形 CBE 中, sin ÐCEB = = =CE 3 3·6·ïï2m nm n mn m nm n,當(dāng) m =1

21、, b =b 不成立,所以 b =2即直線EC3與平面 ABE 所成角的正弦值為 6 分3解法 2:因為平面 ABE 平面 ABCD ,且 EO AB , 所以 EO 平面 ABCD ,所以 EO OD 由OB , OD , OE兩兩垂直,建立如圖所示的空間直角坐標(biāo)系 O -xyz 因為三角形 EAB 為等腰直角三角形,所以O(shè)A =OB =OD =OE,設(shè)OB =1,則O (0,0,0), A( -1,0,0), B (1,0,0), C (1,1,0), D (0,1,0), E (0,0,1)所以 EC =(1,1, -1) ,平面 ABE 的一個法向量為 OD =(0,1,0) 3 分

22、設(shè)直線 EC 與平面 ABE 所成的角為 q ,所以sinq=| cosáEC , ODñ|=| EC ×OD | 3=| EC | OD | 3,即直線EC3與平面 ABE 所成角的正弦值為 6 分3(2)存在點 F ,且EF 1=EA 3時,有EC/平面 FBD 證明如下:由EF =1 1 1 EA =( - ,0,- )3 3 3,1 2 4 2 F (- ,0, ) ,所以 FB =( ,0, - )3 3 3 3ì設(shè)平面 FBD 的法向量為 v =( a, b , c) ,則有 íïîv ×BD =0,

23、v ×FB =0.ì-a+b=0, ï所以 í4 2 a - z =0.î3 3取 a =1 ,得v =(1,1,2)9 分因為 EC ×v=(1,1, -1) ×(1,1,2) =0,且EC Ë平面 FBD ,所以EC/平面 FBD 即點 F 滿足EF 1= 時,有 EC / EA 3平面 FBD 12 分19解:d =n3 +( -1) 2n, a =d +d +d +×××+d= n 1 2 3 2 n3 ´2 n2=3n3 分又由題知:令 m =1 ,則 b =b2

24、1=22,b =b 3 =23 3 1b =b nn 1=2n5 分若b =2nn,則b =2 , b =2 ,所以 b =b n m n m恒成立若b ¹2nn nn m n6 分·7·1c +ï1ïï22ï1 2()由題知將數(shù)列bn中的第 3 項、第 6 項、第 9 項刪去后構(gòu)成的新數(shù)列cn中的奇數(shù)列與偶數(shù)列仍成等比數(shù)列,首項分別是b =2 , b =4 公比均是 8, 9 分 1 2T2013=( c +c +c +×××+c 1 3 5 2013) +( c +c +c +×&

25、#215;×+c 2 4 6 2012)=2 ´(1-81007 ) 4 ´(1-81006 ) 20 ´81006 -6+ =1 -8 1 -8 712 分1c -2 1 220解:() 設(shè) F2(c,0),則 ,所以 c1因為離心率 e ,所以 a 2 3 22所以橢圓 C 的方程為x 22+y2=1 4 分()當(dāng)直線 AB 垂直于 x 軸時,直線 AB 方程為 x12,6 分此時 P( - 2 ,0)、Q( 2 ,0) ,F(xiàn) P ×FQ =-1 2 2不合;當(dāng)直線 AB 不垂直于 x 軸時,設(shè)存在點 M(12,m) (m0),直線 AB

26、的斜率為 k,A( x , y ) 1 1,B ( x , y ) 2 2ìx 21 +y 2 =1, ï 2由 íx 22 +y 2 =1, î 2得( x +y ) +2( x +y ) × 1 1 2 2y -y1 2 =0x -x1 2,則 14mk0,故 k14 m此時,直線 PQ 斜率為 k =-4m11,PQ 的直線方程為 y -m =-4m( x + )2即y =-4mx -mìy =-4mx -m ï聯(lián)立 íx 2+y =1î2消去 y,整理得( 3 2m 2 + 1x)2 + 1m62

27、 x+m22 - =20所以 x +x =-1 216 m32 m 22+12 m 2 -2, x x = 8 分 32 m 2 +1由題意 F P ×F Q = 2 20,于是F P ×F Q = 2 2(x11)(x21)y1y2 =x x -( x +x ) +1 +(4 mx +m)(4mx +m )1 2 1 2 1 2=(1 +16 m2) x x +(4 m 1 22-1)( x +x ) +1 +m 1 22·8·( -¥,0)=(1+16 m 2 )(2 m 2 -2) (4 m 2 -1)(-16 m 2 )+32 m 2 +1 32 m 2 +1+1 +m2=19m 2 -1 32m 2 +1=0 m =±1919因為 M

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論