七年級數(shù)學家庭輔導 第二十三章 一元二次方程 華東師大版_第1頁
七年級數(shù)學家庭輔導 第二十三章 一元二次方程 華東師大版_第2頁
七年級數(shù)學家庭輔導 第二十三章 一元二次方程 華東師大版_第3頁
七年級數(shù)學家庭輔導 第二十三章 一元二次方程 華東師大版_第4頁
七年級數(shù)學家庭輔導 第二十三章 一元二次方程 華東師大版_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、第二十三章 一元二次方程l 應(yīng)知一、基本概念一元二次方程:兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程一元二次方程的一般形式:ax2+bx+c=0(a0)。一元二次方程的根:一元二次方程的解叫做一元二次方程的根【注意】由實際問題列出方程并解得的根,并不一定是實際問題的解,還要檢驗這些根是否符合題意,符合題意的才真正是實際問題的解二、基本法則1. 解一元二次方程的方法直接開平方法:利用平方根的定義直接開平方求一元二次方程的解的方法叫做直接開平方法。直接開平方法適用于解形如的一元二次方程。根據(jù)平方根的定義可知,當時,當b<0時,方程沒有實數(shù)

2、根。因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,這種方法簡單易行,是解一元二次方程最常用的方法。配方法:配方法是將一元二次方程的一般形式:ax2+bx+c=0(a0)變形為的形式,然后求解的方法。其理論根據(jù)是完全平方公式,把公式中的a看做未知數(shù)x,并用x代替,則有。配方法是一種重要的數(shù)學方法,它不僅在解一元二次方程上有所應(yīng)用,而且在數(shù)學的其他領(lǐng)域也有著廣泛的應(yīng)用。公式法:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。一元二次方程的求根公式:2. 解一元二次方程的步驟因式分解法解一元二次方程的步驟:首先把方程右邊化為為零,左邊通過因式分解化為兩個

3、一次因式乘積,由于兩個一次因式相乘為零,第一個因式為零或第二個因式為零,可各解得一個根。【注意】使用因式分解法解一元二次方程時千萬別約去兩邊含未知數(shù)的等式,否則,將會失去一個根。用配方法解一元二次方程的步驟:(1)移項;(2)化二次項系數(shù)為1;(3)方程兩邊都加上一次項系數(shù)的一半的平方;(4)原方程變形為(x+m)2=n的形式;(5)如果右邊是非負數(shù),就可以直接開平方求出方程的解,如果右邊是負數(shù),則一元二次方程無解【注意】用配方法解一元二次方程,當二次項系數(shù)不為一時,一定要化為一,然后才能方程兩邊同時加上一次項系數(shù)一半的平方。用求根公式解一元二次方程的關(guān)鍵是先把方程化為ax2+bx+c=0(a

4、0)的形式,當b2-4ac0時,方程的解為x=,當b2-4ac<0時,一元二次方程無解。用公式法解一元二次方程時,一定要把一元二次方程化為ax2+bx+c=0(a0)的形式,準確確定a、b、c的值。b2-4ac叫做一元二次方程的根的判別式,通常用""來表示,即=b2-4ac,""讀作"delta".一元二次方程的根的情況與判別式的關(guān)系: 當0時,方程有兩個不相等的實數(shù)根 ,當0時,方程有兩個相等的實數(shù)根 ,當0時,方程沒有實數(shù)根。列一元二次方程解應(yīng)用題的一般步驟:可概括為審、設(shè)、列、解、答。審:弄清題目中涉及到的已知量與未知量,

5、找出反映已知量與未知量等量關(guān)系的句子。設(shè):用x表示未知數(shù),把其他量也用數(shù)學利用已知量與未知量之間的等量關(guān)系式子表示出來。列:利用已知量與未知量之間的等量關(guān)系列一元二次方程。解:解一元二次方程,注意要檢驗所得的解是否滿足題意。答:寫出答案。3. 常用術(shù)語含意:翻一番:即為原凈收入的2倍。平均年增長率:指的是每一年凈收入增長的百分數(shù)是一個相同的值。即每年按同樣的百分數(shù)增加,而增長的絕對數(shù)是不相同的。l 應(yīng)會1. 會把一元二次方程化成為一般形式。2. 會用配方法、公式法、因式分解法解一元二次方程。3. 能利用一元二次方程的數(shù)學模型解決實際問題。l 例題1. 求證:關(guān)于x的方程(m2-8m+17)x2

6、+2mx+1=0,不論m取何值,該方程都是一元二次方程2. 用配方法解方程(6x+7)2(3x+4)(x+1)=6 3. 如圖(a)、(b)所示,在ABC中B=90°,AB=6cm,BC=8cm,點P從點A開始沿AB邊向點B以1cm/s的速度運動,點Q從點B開始沿BC邊向點C以2cm/s的速度運動(1) 如果P、Q分別從A、B同時出發(fā),經(jīng)過幾秒鐘,使SPBQ=8cm2(2) 如果P、Q分別從A、B同時出發(fā),并且P到B后又繼續(xù)在BC邊上前進,Q到C后又繼續(xù)在CA邊上前進,經(jīng)過幾秒鐘,使PCQ的面積等于 12.6cm2(友情提示:過點Q作DQCB,垂足為D,則:)4. 市政府計劃2年內(nèi)將

7、人均住房面積由現(xiàn)在的10m2提高到14.4m,求每年人均住房面積增長率5. 某數(shù)學興趣小組對關(guān)于x的方程+(m-2)x-1=0提出了下列問題(1)若使方程為一元二次方程,m是否存在?若存在,求出m并解此方程(2)若使方程為一元一次方程,m是否存在?若存在,請求出你能解決這個問題嗎?6. 某人將2000元人民幣按一年定期存入銀行,到期后支取1000元用于購物,剩下的1000元及應(yīng)得利息又全部按一年定期存入銀行,若存款的利率不變,到期后本金和利息共1320元,求這種存款方式的年利率7. 某商場禮品柜臺春節(jié)期間購進甲、乙兩種賀年卡,甲種賀年卡平均每天可售出500張,每張盈利0.3元,乙種賀年卡平均每

8、天可售出200張,每張盈利0.75元,為了盡快減少庫存,商場決定采取適當?shù)慕祪r措施,調(diào)查發(fā)現(xiàn),如果甲種賀年卡的售價每降價0.1元,那么商場平均每天可多售出100張;如果乙種賀年卡的售價每降價0.25元,那么商場平均每天可多售出34張如果商場要想每種賀年卡平均每天盈利120元,那么哪種賀年卡每張降價的絕對量大8. 某林場計劃修一條長750m,斷面為等腰梯形的渠道,斷面面積為1.6m2,上口寬比渠深多2m,渠底比渠深多0.4m(1)渠道的上口寬與渠底寬各是多少?(2)如果計劃每天挖土48m3,需要多少天才能把這條渠道挖完?9. 一輛汽車以20m/s的速度行駛,司機發(fā)現(xiàn)前方路面有情況,緊急剎車后汽車

9、又滑行25m后停車(1)從剎車到停車用了多少時間?(2)從剎車到停車平均每秒車速減少多少?(3)剎車后汽車滑行到15m時約用了多少時間(精確到0.1s)?10. 如圖,某海軍基地位于A處,在其正南方向200海里處有一重要目標B,在B的正東方向200海里處有一重要目標C,小島D位于AC的中點,島上有一補給碼頭:小島F位于BC上且恰好處于小島D的正南方向,一艘軍艦從A出發(fā),經(jīng)B到C勻速巡航,一艘補給船同時從D出發(fā),沿南偏西方向勻速直線航行,欲將一批物品送達軍艦(1)小島D和小島F相距多少海里?(2)已知軍艦的速度是補給船的2倍,軍艦在由B到C的途中與補給船相遇于E處,那么相遇時補給船航行了多少海里

10、?(結(jié)果精確到0.1海里)l 參考答案觀察與分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m2-8m+170即可。1. 證明:m2-8m+17=(m-4)2+1 (m-4)20 (m-4)2+1>0,即(m-4)2+10 不論m取何值,該方程都是一元二次方程觀察與分析:因為如果展開(6x+7)2,那么方程就變得很復(fù)雜,如果把(6x+7)看為一個數(shù)y,那么(6x+7)2=y2,其它的3x+4=(6x+7)+,x+1=(6x+7)-,因此,方程就轉(zhuǎn)化為y的方程,像這樣的轉(zhuǎn)化,我們把它稱為換元法。2. 解:設(shè)6x+7=y 則3x+4=y+,x+1=y- 依題意,得:y2(y+)(y

11、-)=6 去分母,得:y2(y+1)(y-1)=72 y2(y2-1)=72, y4-y2=72 (y2-)2= y2-=± y2=9或y2=-8(舍) y=±3 當y=3時,6x+7=3 6x=-4 x=- 當y=-3時,6x+7=-3 6x=-10 x=- 所以,原方程的根為x1=-,x2=-觀察與分析:(1)設(shè)經(jīng)過x秒鐘,使SPBQ=8cm2,那么AP=x,PB=6-x,QB=2x,由面積公式便可得到一元二次方程的數(shù)學模型(2)設(shè)經(jīng)過y秒鐘,這里的y>6使PCQ的面積等于12.6cm2因為AB=6,BC=8,由勾股定理得:AC=10,又由于PA=y,CP=(14

12、-y),CQ=(2y-8),又由友情提示,便可得到DQ,那么根據(jù)三角形的面積公式即可建模。3. 解:(1)設(shè)x秒,點P在AB上,點Q在BC上,且使PBQ的面積為8cm2 則:(6-x)·2x=8 整理,得:x2-6x+8=0 解得:x1=2,x2=4 經(jīng)過2秒,點P到離A點1×2=2cm處,點Q離B點2×2=4cm處,經(jīng)過4秒,點P到離A點1×4=4cm處,點Q離B點2×4=8cm處,所以它們都符合要求 (2)設(shè)y秒后點P移到BC上,且有CP=(14-y)cm,點Q在CA上移動,且使CQ=(2y-8)cm,過點Q作DQCB,垂足為D,則有 AB

13、=6,BC=8 由勾股定理,得:AC=10 DQ= 則:(14-y)·=12.6 整理,得:y2-18y+77=0 解得:y1=7,y2=11 即經(jīng)過7秒,點P在BC上距C點7cm處(CP=14-y=7),點Q在CA上距C點6cm處(CQ=2y-8=6),使PCD的面積為12.6cm2 經(jīng)過11秒,點P在BC上距C點3cm處,點Q在CA上距C點14cm>10,點Q已超過CA的范圍,即此解不存在 本小題只有一解y1=7觀察與分析:設(shè)每年人均住房面積增長率為x一年后人均住房面積就應(yīng)該是10+10x=10(1+x);二年后人均住房面積就應(yīng)該是10(1+x)+10(1+x)x=10(1

14、+x)24. 解:設(shè)每年人均住房面積增長率為x, 則:10(1+x)2=14.4 (1+x)2=1.44 直接開平方,得1+x=±1.2 即1+x=1.2,1+x=-1.2 所以,方程的兩根是x1=0.2=20%,x2=-2.2 因為每年人均住房面積的增長率應(yīng)為正的,因此,x2=-2.2應(yīng)舍去 所以,每年人均住房面積增長率應(yīng)為20%觀察與分析:能(1)要使它為一元二次方程,必須滿足m2+1=2,同時還要滿足(m+1)0(2)要使它為一元一次方程,必須滿足:或或5. 解:(1)存在根據(jù)題意,得:m2+1=2 m2=1 m=±1 當m=1時,m+1=1+1=20 當m=-1時,

15、m+1=-1+1=0(不合題意,舍去) 當m=1時,方程為2x2-1-x=0 a=2,b=-1,c=-1 b2-4ac=(-1)2-4×2×(-1)=1+8=9 x= x1=,x2=- 因此,該方程是一元二次方程時,m=1,兩根x1=1,x2=- (2)存在根據(jù)題意,得:m2+1=1,m2=0,m=0 因為當m=0時,(m+1)+(m-2)=2m-1=-10 所以m=0滿足題意 當m2+1=0,m不存在 當m+1=0,即m=-1時,m-2=-30 所以m=-1也滿足題意 當m=0時,一元一次方程是x-2x-1=0, 解得:x=-1 當m=-1時,一元一次方程是-3x-1=0

16、 解得x=- 因此,當m=0或-1時,該方程是一元一次方程,并且當m=0時,其根為x=-1;當m=-1時,其一元一次方程的根為x=-觀察與分析:設(shè)這種存款方式的年利率為x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就變?yōu)?000+2000x·80%,其它依此類推。6. 解:設(shè)這種存款方式的年利率為x 則:1000+2000x·80%+(1000+2000x·8%)x·80%=1320 整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0 解得:x1=-2(不符,舍去)

17、,x2=0.125=12.5% 答:所求的年利率是125%觀察與分析:原來,兩種賀年卡平均每天的盈利一樣多,都是150元;,從這些數(shù)目看,好象兩種賀年卡每張降價的絕對量一樣大,其實并非如此。7. 解:(1)從題意可知,商場要想平均每天盈利120元,甲種賀年卡應(yīng)降價0.1元 (2)乙種賀年卡:設(shè)每張乙種賀年卡應(yīng)降價y元, 則:(0.75-y)(200+×34)=120 即(-y)(200+136y)=120 整理:得68y2+49y-15=0 y= y-0.98(不符題意,應(yīng)舍去) y0.23元 答:乙種賀年卡每張降價的絕對量大【注意】從以上一些絕對量的比較,不能說明其它絕對量或者相對

18、量也有同樣的變化規(guī)律觀察與分析:因為渠深最小,為了便于計算,不妨設(shè)渠深為xm,則上口寬為x+2,渠底為x+0.4,那么,根據(jù)梯形的面積公式便可建模。8. 解:(1)設(shè)渠深為xm 則渠底為(x+0.4)m,上口寬為(x+2)m 依題意,得:(x+2+x+0.4)x=1.6 整理,得:5x2+6x-8=0 解得:x1=0.8m,x2=-2(舍) 上口寬為2.8m,渠底為1.2m (2)=25天 答:渠道的上口寬與渠底深各是2.8m和1.2m;需要25天才能挖完渠道。觀察與分析:分析:(1)剛剎車時時速還是20m/s,以后逐漸減少,停車時時速為0因為剎車以后,其速度的減少都是受摩擦力而造成的,所以可

19、以理解是勻速的,因此,其平均速度為=10m/s,那么根據(jù):路程=速度×時間,便可求出所求的時間 (2)很明顯,剛要剎車時車速為20m/s,停車車速為0,車速減少值為20-0=20,因為車速減少值20,是在從剎車到停車所用的時間內(nèi)完成的,所以20除以從剎車到停車的時間即可 (3)設(shè)剎車后汽車滑行到15m時約用除以xs由于平均每秒減少車速已從上題求出,所以便可求出滑行到15米的車速,從而可求出剎車到滑行到15m的平均速度,再根據(jù):路程=速度×時間,便可求出x的值。9. 解:(1)從剎車到停車所用的路程是25m;從剎車到停車的平均車速是=10(m/s) 那么從剎車到停車所用的時間是=2.5(s) (2)從剎

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論