




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上實(shí)驗(yàn)題目 多重共線性的診斷與修正 一、實(shí)驗(yàn)?zāi)康呐c要求:要求目的:1、對多元線性回歸模型的多重共線性的診斷; 2、對多元線性回歸模型的多重共線性的修正。二、實(shí)驗(yàn)內(nèi)容根據(jù)書上第四章引子“農(nóng)業(yè)的發(fā)展反而會減少財政收入”,19782007年的財政收入,農(nóng)業(yè)增加值,工業(yè)增加值,建筑業(yè)增加值等數(shù)據(jù),運(yùn)用EV軟件,做回歸分析,判斷是否存在多重共線性,以及修正。三、實(shí)驗(yàn)過程:(實(shí)踐過程、實(shí)踐所有參數(shù)與指標(biāo)、理論依據(jù)說明等)(一)模型設(shè)定及其估計經(jīng)分析,影響財政收入的主要因素,除了農(nóng)業(yè)增加值,工業(yè)增加值,建筑業(yè)增加值以外,還可能與總?cè)丝诘纫蛩赜嘘P(guān)。研究“農(nóng)業(yè)的發(fā)展反而會減少財政收入”這
2、個問題。設(shè)定如下形式的計量經(jīng)濟(jì)模型:=+其中,為財政收入CS/億元;為農(nóng)業(yè)增加值NZ/億元;為工業(yè)增加值GZ/億元;為建筑業(yè)增加值JZZ/億元;為總?cè)丝赥POP/萬人;為最終消費(fèi)CUM/億元;為受災(zāi)面積SZM/千公頃。圖1: 19782007年財政收入及其影響因素數(shù)據(jù)年份財政收入CS/億元農(nóng)業(yè)增加值NZ/億元工業(yè)增加值GZ/億元建筑業(yè)增加值JZZ/億元總?cè)丝赥POP/萬人最終消費(fèi)CUM/億元受災(zāi)面積SZM/千公頃19781132.31027.51607138.2962592239.15079019791146.41270.21769.7143.8975422633.73937019801159
3、.91371.61996.5195.5987053007.94452619811175.81559.52048.4207.13361.53979019821212.31777.42162.3220.73714.833130198313671978.42375.6270.64126.43471019841642.92316.12789316.74846.33189019852004.82564.43448.7417.95986.344365198621222788.73967525.76821.84714019872199.432334585.8665.87804.64209019882357.
4、23865.45777.28109839.55087019892664.94265.9648479411164.24699119902937.150626858859.412090.53847419913149.485342.28087.11015.114091.95547219923483.375866.610284.5141517203.35133319934348.956963.8141882266.521899.94882919945218.19572.719480.72964.729242.25504319956242.212135.824950.63728.836748.24582
5、119967407.9914015.429447.64387.443919.54698919978651.1414441.932921.44621.648140.65342919989875.9514817.634018.44985.851588.250145199911444.081477035861.55172.155636.949981200013395.2314944.7400365522.36151654688200116386.0415781.343580.65931.766878.352215200218903.641653747431.36465.571691.24711920
6、0321715.2517381.754945.57490.877449.554506200426396.4721412.7652108694.387032.937106200531649.292242076912.910133.896918.138818200638760.22404091310.911851.1.341091200751321.7828095.214014.1.648992利用EV軟件,生成、等數(shù)據(jù),采用這些數(shù)據(jù)對模型進(jìn)行OLS回歸。(二)診斷多重共線性1、雙擊“Eviews”,進(jìn)入主頁。輸入數(shù)據(jù):點(diǎn)擊主菜單中的File/Open /EV WorkfileExcel多重共線性
7、的數(shù)據(jù).xls ;2、在EV主頁界面的窗口,輸入“l(fā)s y c x2 x3 x4 x5 x6 x7”,按“Enter”.出現(xiàn)OLS回歸結(jié)果,圖2: 圖2: OLS 回歸結(jié)果Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:07Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C-6646.6946454.156-1.0.3138X2-0.0.-2.0.0074X31.
8、0.4.0.0001X4-2.2.-1.0.1963X50.0.1.0.2653X6-0.0.-0.0.5688X70.0.0.0.8306R-squared0. Mean dependent var10049.04Adjusted R-squared0. S.D. dependent var12585.51S.E. of regression1041.849 Akaike info criterion16.93634Sum squared resid
9、60; Schwarz criterion17.26329Log likelihood-247.0452 F-statistic701.4747Durbin-Watson stat2. Prob(F-statistic)0.由此可見,該模型的可決系數(shù)為0.995,修正的可決系數(shù)為0.993,模型擬和很好,F(xiàn)統(tǒng)計量為701.47,模型擬和很好,回歸方程整體上顯著。但是當(dāng)=0.05時,=2.069,不僅X4、X5、X6、X7的系數(shù)t檢驗(yàn)不顯著,而且X2、X4、X6系數(shù)的符號
10、與預(yù)期相反,這表明很可能存在嚴(yán)重的多重共線性。(即除了農(nóng)業(yè)增加值、工業(yè)增加值外,其他因素對財政收入的影響都不顯著,且農(nóng)業(yè)增加值、建筑業(yè)增加值、最終消費(fèi)的回歸系數(shù)還是負(fù)數(shù),這說明很可能存在嚴(yán)重的多重共線性。)3、計算各解釋變量的相關(guān)系數(shù):在Workfile窗口,選擇X2、X3、X4、X5、X6、X7數(shù)據(jù),點(diǎn)擊“Quick”Group StatisticsCorrelationsOK,出現(xiàn)相關(guān)系數(shù)矩陣,如圖3:圖3: 相關(guān)系數(shù)矩陣X2X3X4X5X6X7X210.1470.97890.67450.46670.2465X30.14710.31880.87580.17840.6215X40.97890
11、.318810.80510.15960.4353X50.67450.87580.805110.69790.8787X60.46670.17840.15960.697910.1582X70.24650.62150.43530.87870.15821由相關(guān)系數(shù)矩陣可以看出,各解釋變量相互之間的相關(guān)系數(shù)較高,特別是農(nóng)業(yè)增加值、工業(yè)增加值、建筑業(yè)增加值、最終消費(fèi)之間,相關(guān)系數(shù)都在0.8以上。這表明模型存在著多重共線性。(三)修正多重共線性1、采用逐步回歸法,去檢驗(yàn)和解決多重共線性問題。分別作Y對X2、X3、X4、X5、X6、X7的一元回歸,結(jié)果如下圖4:在EV主頁界面的窗口,輸入“l(fā)s y c x2”
12、,“回車鍵”。Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:49Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C-4086.5441463.091-2.0.0093X21.0.12.403980.0000R-squared0. Mean dependent var10049.04Adjusted R-squared
13、0. S.D. dependent var12585.51S.E. of regression5025.770 Akaike info criterion19.94689Sum squared resid7.07E+08 Schwarz criterion20.04030Log likelihood-297.2033 F-statistic153.8588Durbin-Watson stat0.
14、60; Prob(F-statistic)0.依次如上推出X3、X4、X5、X6、X7的一元回歸。綜上所述,結(jié)果如下圖4:圖4.一元回歸估計結(jié)果變量參數(shù)估計值1.0.3.0.0.0.t統(tǒng)計量12.4039828.9016822.677336.18.128950.0.0.0.0.0.0.0.0.0.0.0.-0.2、其中,加入的最大,以為基礎(chǔ),順次加入其他變量逐步回歸。結(jié)果如下圖5:Dependent Variable: YMethod: Least SquaresDate: 10/13/10 Time: 01:27Sample: 1978 2007Included obs
15、ervations: 30VariableCoefficientStd. Errort-StatisticProb. C1976.086388.24135.0.0000X2-1.0.-10.504860.0000X30.0.25.000560.0000R-squared0. Mean dependent var10049.04Adjusted R-squared0. S.D. dependent var12585.51S.E. of regression1041.474
16、 Akaike info criterion16.82930Sum squared resid Schwarz criterion16.96942Log likelihood-249.4395 F-statistic2103.946Durbin-Watson stat1. Prob(F-statistic)0.依照上面,在順次加入X4、X5、X6、X7,進(jìn)行逐步回歸。綜合結(jié)果如下圖5:圖5.加入新變量的回歸結(jié)果(一)變量X2
17、X3X4X5X6X7X3,X2-1.0.0.(-10.50486)(25.00056)X3,X41.65227-9.0.(11.46367)(-8.)X3,X50.-0.0.98301(26.29703)(-5.)X3,X60.-0.0.(11.18199)(-5.)X3,X70.-0.0.(30.62427)(-2.)經(jīng)比較,新加入的方程= 0. ,改進(jìn)最大, 但是得系數(shù)為負(fù),這顯然不符題意。在的基礎(chǔ)上分別加入其他變量后發(fā)現(xiàn),的系數(shù)都為負(fù),與預(yù)期估計違背。因此這些變量都會引起嚴(yán)重的多重共線性,全部剔除,只保留。修正的回歸結(jié)果為:Dependent Variable: YMethod: Lea
18、st SquaresDate: 10/12/10 Time: 17:50Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C-1075.289570.5337-1.0.0699X30.0.28.901680.0000R-squared0. Mean dependent var10049.04Adjusted R-squared0. S.D. dependen
19、t var12585.51S.E. of regression2306.678 Akaike info criterion18.38935Sum squared resid1.49E+08 Schwarz criterion18.48276Log likelihood-273.8402 F-statistic835.3074Durbin-Watson stat0. Prob(F-statistic)0.= -10
20、75.289 + 0.(-1.) (28.90168)= 0. =0. F=835.3074這說明在其他因素不變的情況下,工業(yè)增加值每增加1億元,財政收入平均增加0.億元。四、實(shí)踐結(jié)果報告: 為研究“農(nóng)業(yè)的發(fā)展反而會減少財政收入”的問題,根據(jù)19782007年的財政收入,農(nóng)業(yè)增加值,工業(yè)增加值,建筑業(yè)增加值等數(shù)據(jù),運(yùn)用EV軟件,做回歸分析,判斷是否存在多重共線性,以及修正。最后修正的回歸結(jié)果為:= -1075.289 + 0.(-1.) (28.90168)= 0. =0. F=835.3074這說明在其他因素不變的情況下,工業(yè)增加值每增加1億元,財政收入平均增加0.億元??蓻Q系數(shù)為0.,較高
21、,說明模型擬合優(yōu)度高;F值為835.3074,說明整個方程顯著;斜率系數(shù)的t值28.90168,大于t統(tǒng)計量,t檢驗(yàn)顯著,符合題意。逐步回歸后的結(jié)果雖然實(shí)現(xiàn)了減輕多重共線性的目的,但反映農(nóng)業(yè)增加值,建筑業(yè)增加值的X2,X3等也一并從模型中剔除出去了,可能會帶來設(shè)定偏誤,這是在使用逐步回歸時需要注意的問題。附加:1、 分別作Y對X2、X3、X4、X5、X6、X7的一元回歸,結(jié)果如下:ls y c x2Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:49Sample: 1978 2007Included obser
22、vations: 30VariableCoefficientStd. Errort-StatisticProb. C-4086.5441463.091-2.0.0093X21.0.12.403980.0000R-squared0. Mean dependent var10049.04Adjusted R-squared0. S.D. dependent var12585.51S.E. of regression5025.770 Akai
23、ke info criterion19.94689Sum squared resid7.07E+08 Schwarz criterion20.04030Log likelihood-297.2033 F-statistic153.8588Durbin-Watson stat0. Prob(F-statistic)0.ls y c x3Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time:
24、17:50Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C-1075.289570.5337-1.0.0699X30.0.28.901680.0000R-squared0. Mean dependent var10049.04Adjusted R-squared0. S.D. dependent var12585.51S.E. of regression
25、2306.678 Akaike info criterion18.38935Sum squared resid1.49E+08 Schwarz criterion18.48276Log likelihood-273.8402 F-statistic835.3074Durbin-Watson stat0. Prob(F-statistic)0.ls y c x4Dependent Variable: YMethod
26、: Least SquaresDate: 10/12/10 Time: 17:50Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C-1235.177727.9896-1.0.1008X43.0.22.677330.0000R-squared0. Mean dependent var10049.04Adjusted R-squared0. S.D. dep
27、endent var12585.51S.E. of regression2910.486 Akaike info criterion18.85437Sum squared resid2.37E+08 Schwarz criterion18.94778Log likelihood-280.8155 F-statistic514.2614Durbin-Watson stat0. Prob(F-statistic)0.
28、ls y c x5 Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:51Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C-86420.4215618.35-5.0.0000X50.0.6.0.0000R-squared0. Mean dependent var10049.04Adjusted R-squared0.&
29、#160; S.D. dependent var12585.51S.E. of regression8310.188 Akaike info criterion20.95269Sum squared resid1.93E+09 Schwarz criterion21.04611Log likelihood-312.2904 F-statistic38.51474Durbin-Watson stat0.
30、 Prob(F-statistic)0.ls y c x6Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:51Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C-2026.867934.3495-2.0.0387X60.0.18.128950.0000R-squared0. Mean depend
31、ent var10049.04Adjusted R-squared0. S.D. dependent var12585.51S.E. of regression3588.750 Akaike info criterion19.27334Sum squared resid3.61E+08 Schwarz criterion19.36675Log likelihood-287.1000 F-statistic328.
32、6589Durbin-Watson stat0. Prob(F-statistic)0.ls y c x7Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 18:36Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C4934.61616135.440.0.7620X70.0.0.0.7511R-squared0. &
33、#160; Mean dependent var10049.04Adjusted R-squared-0. S.D. dependent var12585.51S.E. of regression12784.87 Akaike info criterion21.81425Sum squared resid4.58E+09 Schwarz criterion21.90767Log likelihood-325.2138
34、0; F-statistic0.Durbin-Watson stat0. Prob(F-statistic)0.2、 以為基礎(chǔ),順次加入其他變量逐步回歸。X3、X2:Dependent Variable: YMethod: Least SquaresDate: 10/13/10 Time: 01:27Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C1976.086388.241
35、35.0.0000X2-1.0.-10.504860.0000X30.0.25.000560.0000R-squared0. Mean dependent var10049.04Adjusted R-squared0. S.D. dependent var12585.51S.E. of regression1041.474 Akaike info criterion16.82930Sum squared resid
36、0;Schwarz criterion16.96942Log likelihood-249.4395 F-statistic2103.946Durbin-Watson stat1. Prob(F-statistic)0.X3、X4:Dependent Variable: YMethod: Least SquaresDate: 10/13/10 Time: 01:27Sample: 1978 2007Included observations: 30VariableCoefficientStd. Erro
37、rt-StatisticProb. C-241.4297318.0985-0.0.4544X31.0.11.463670.0000X4-9.1.-8.0.0000R-squared0. Mean dependent var10049.04Adjusted R-squared0. S.D. dependent var12585.51S.E. of regression1223.617 Akaike info criterion17.151
38、65Sum squared resid Schwarz criterion17.29177Log likelihood-254.2747 F-statistic1520.477Durbin-Watson stat1. Prob(F-statistic)0.X3、X5:Dependent Variable: YMethod: Least SquaresDate: 10/13/10 Time: 01:28Sample: 1978 2007Included obs
39、ervations: 30VariableCoefficientStd. Errort-StatisticProb. C27090.895304.5145.0.0000X30.0.26.297030.0000X5-0.0.-5.0.0000R-squared0. Mean dependent var10049.04Adjusted R-squared0. S.D. dependent var12585.51S.E. of regression1640.462 Akaike info criterion17.73798Sum squared resid Schwarz criterion17.87810Log likelihood-263.0698 F-statistic839.9479Durbin-Watson stat0.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- JJF 2199-2025數(shù)字式時鐘校準(zhǔn)規(guī)范
- 前期策劃合同范本
- 養(yǎng)牛設(shè)備出售合同范本
- 保障性住房購房合同范本
- 加油卡租車合同范本
- 協(xié)議單位優(yōu)惠合同范例
- 醫(yī)藥物流合同范本
- 修叉車合同范本
- 勞務(wù)分包協(xié)議合同范本
- 勞務(wù)合同范本已填
- 脫硫自動化控制-洞察分析
- 醫(yī)務(wù)人員醫(yī)德醫(yī)風(fēng)培訓(xùn)
- 人教版初中歷史八上-第2課 第二次鴉片戰(zhàn)爭
- 2024湖北省金口電排站管理處招聘易考易錯模擬試題(共500題)試卷后附參考答案
- 油井供水合同范例
- 2025年人教部編版語文五年級下冊教學(xué)計劃(含進(jìn)度表)
- 全國計算機(jī)等級考試一級試題及答案(5套)
- 銀河證券-科創(chuàng)板認(rèn)知測評題目及答案
- 產(chǎn)品方案設(shè)計模板
- 部隊(duì)通訊員培訓(xùn)
- 物業(yè)公司水浸、水管爆裂事故應(yīng)急處置預(yù)案
評論
0/150
提交評論