中考數(shù)學_常用公式性質(zhì)(精華版)_第1頁
中考數(shù)學_常用公式性質(zhì)(精華版)_第2頁
中考數(shù)學_常用公式性質(zhì)(精華版)_第3頁
中考數(shù)學_常用公式性質(zhì)(精華版)_第4頁
中考數(shù)學_常用公式性質(zhì)(精華版)_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、中考數(shù)學常用公式及性質(zhì)1 乘法與因式分解(ab)(ab)a2b2;(a±b)2a2±2abb2;(ab)(a2abb2)a3b3;(ab)(a2abb2)a3b3;a2b2(ab)22ab;(ab)2(ab)24ab。2 冪的運算性質(zhì)am×anam+n;am÷anam-n;(am)namn;(ab)nanbn;()n;a-n,特別:()-n()n;a01(a0)。3 二次根式()2a(a0);丨a丨;×;(a0,b0)。4 三角不等式|a|-|b|a±b|a|+|b|定理;加強條件:|a|-|b|a±b|a|+|b|也成立,

2、這個不等式也可稱為向量的三角不等式其中a,b分別為向量a和向量b |a+b|a|+|b|;|a-b|a|+|b|;|a|b<=>-bab ;|a-b|a|-|b|; -|a|a|a|; 5 某些數(shù)列前n項之和1+2+3+4+5+6+7+8+9+n=n(n+1)/2;1+3+5+7+9+11+13+15+(2n-1)=n2 ;2+4+6+8+10+12+14+(2n)=n(n+1); 12+22+32+42+52+62+72+82+n2=n(n+1)(2n+1)/6; 13+23+33+43+53+63+n3=n2(n+1)2/4; 1*2+2*3+3*4+4*5+5*6+6*7+n

3、(n+1)=n(n+1)(n+2)/3; 6 一元二次方程對于方程:ax2bxc0:求根公式是x,其中b24ac叫做根的判別式。當0時,方程有兩個不相等的實數(shù)根;當0時,方程有兩個相等的實數(shù)根;當0時,方程沒有實數(shù)根注意:當0時,方程有實數(shù)根。假設(shè)方程有兩個實數(shù)根x1和x2,那么二次三項式ax2bxc可分解為a(xx1)(xx2)。以a和b為根的一元二次方程是x2(ab)xab0。7 一次函數(shù)一次函數(shù)ykxb(k0)的圖象是一條直線(b是直線與y軸的交點的縱坐標,稱為截距)。當k0時,y隨x的增大而增大(直線從左向右上升);當k0時,y隨x的增大而減小(直線從左向右下降);特別地:當b0時,y

4、kx(k0)又叫做正比例函數(shù)(y與x成正比例),圖象必過原點。8 反比例函數(shù)反比例函數(shù)y(k0)的圖象叫做雙曲線。當k0時,雙曲線在一、三象限(在每一象限內(nèi),從左向右降);當k0時,雙曲線在二、四象限(在每一象限內(nèi),從左向右上升)。9 二次函數(shù)1.定義:一般地,如果是常數(shù),那么叫做的二次函數(shù)。2.拋物線的三要素:開口方向、對稱軸、頂點。 的符號決定拋物線的開口方向:當時,開口向上;當時,開口向下;相等,拋物線的開口大小、形狀相同。 平行于軸或重合的直線記作.特別地,軸記作直線。3.幾種特殊的二次函數(shù)的圖像特征如下:函數(shù)解析式開口方向?qū)ΨQ軸頂點坐標當時開口向上當時開口向下軸0,0軸(0, )(,

5、0)(,)()4.求拋物線的頂點、對稱軸的方法 公式法:,頂點是,對稱軸是直線。 配方法:運用配方的方法,將拋物線的解析式化為的形式,得到頂點為(,),對稱軸是直線。 運用拋物線的對稱性:由于拋物線是以對稱軸為軸的軸對稱圖形,對稱軸與拋物線的交點是頂點。 假設(shè)拋物線上兩點及y值相同,那么對稱軸方程可以表示為:5.拋物線中,的作用 決定開口方向及開口大小,這與中的完全一樣。 和的對稱軸是直線。,故:時,對稱軸為軸;即、同號時,對稱軸在軸左側(cè);即、異號時,對稱軸在軸右側(cè)。 的大小決定拋物線與軸交點的位置。 當時,拋物線與軸有且只有一個交點0,: ,拋物線經(jīng)過原點; ,與軸交于正半軸;,與軸交于負半

6、軸.軸右側(cè),那么 。6.用待定系數(shù)法求二次函數(shù)的解析式 一般式:.圖像上三點或三對、的值,通常選擇一般式. 頂點式:.圖像的頂點或?qū)ΨQ軸,通常選擇頂點式。 交點式:圖像與軸的交點坐標、,通常選用交點式:。7.直線與拋物線的交點 軸與拋物線得交點為(0, )。 拋物線與軸的交點。 二次函數(shù)的圖像與軸的兩個交點的橫坐標、,是對應一元二次方程軸的交點情況可以由對應的一元二次方程的根的判別式判定: a有兩個交點()拋物線與軸相交; b有一個交點頂點在軸上()拋物線與軸相切; c沒有交點()拋物線與軸相離。 平行于軸的直線與拋物線的交點 同一樣可能有0個交點、1個交點、2個交點.當有2個交點時,兩交點的

7、縱坐標相等,設(shè)縱坐標為,那么橫坐標是的兩個實數(shù)根。 一次函數(shù)的圖像與二次函數(shù)的圖像的交點,由方程組 的解的數(shù)目來確定:a方程組有兩組不同的解時與有兩個交點;b方程組只有一組解時與只有一個交點;c方程組無解時與沒有交點。 拋物線與軸兩交點之間的距離:假設(shè)拋物線與軸兩交點為,那么 10 統(tǒng)計初步1概念:所要考察的對象的全體叫做總體,其中每一個考察對象叫做個體從總體中抽取的一部份個體叫做總體的一個樣本,樣本中個體的數(shù)目叫做樣本容量在一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)(有時不止一個),叫做這組數(shù)據(jù)的眾數(shù)將一組數(shù)據(jù)按大小順序排列,把處在最中間的一個數(shù)(或兩個數(shù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)2公式:設(shè)有n個數(shù)x

8、1,x2,xn,那么:平均數(shù)為:;極差:用一組數(shù)據(jù)的最大值減去最小值所得的差來反映這組數(shù)據(jù)的變化范圍,用這種方法得到的差稱為極差,即:極差=最大值-最小值;方差:數(shù)據(jù)、, 的方差為,那么=標準差:方差的算術(shù)平方根。數(shù)據(jù)、, 的標準差,那么=一組數(shù)據(jù)的方差越大,這組數(shù)據(jù)的波動越大,越不穩(wěn)定。11 頻率與概率1頻率頻率=,各小組的頻數(shù)之和等于總數(shù),各小組的頻率之和等于1,頻率分布直方圖中各個小長方形的面積為各組頻率。2概率如果用P表示一個事件A發(fā)生的概率,那么0PA1;P必然事件=1;P不可能事件=0;在具體情境中了解概率的意義,運用列舉法包括列表、畫樹狀圖計算簡單事件發(fā)生的概率。大量的重復實驗時

9、頻率可視為事件發(fā)生概率的估計值;12 銳角三角形設(shè)A是ABC的任一銳角,那么A的正弦:sinA,A的余弦:cosA,A的正切:tanA并且sin2Acos2A1。0sinA1,0cosA1,tanA0A越大,A的正弦和正切值越大,余弦值反而越小。余角公式:sin(90ºA)cosA,cos(90ºA)sinA。特殊角的三角函數(shù)值:sin30ºcos60º,sin45ºcos45º,sin60ºcos30º, tan30º,tan45º1,tan60º。hl斜坡的坡度:i設(shè)坡角為,那么i

10、tan。13 正余弦定理1正弦定理 a/sinA=b/sinB=c/sinC=2R;注:其中 R 表示三角形的外接圓半徑。 正弦定理的變形公式:(1) a=2RsinA, b=2RsinB, c=2RsinC;(2) sinA : sinB : sinC = a : b : c2余弦定理 b2=a2+c2-2accosB;a2=b2+c2-2bccosA;c2=a2+b2-2abcosC; 注:C所對的邊為c,B所對的邊為b,A所對的邊為a14 三角函數(shù)公式(1) 兩角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A

11、+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) (2) 倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a (3) 半角公式 sin(A/2)=(1-cosA)/

12、2) sin(A/2)=-(1-cosA)/2) cos(A/2)=(1+cosA)/2) cos(A/2)=-(1+cosA)/2) tan(A/2)=(1-cosA)/(1+cosA) tan(A/2)=-(1-cosA)/(1+cosA)ctg(A/2)=(1+cosA)/(1-cosA) ctg(A/2)=-(1+cosA)/(1-cosA) (4) 和差化積 sinA+sinB=2sin(A+B)/2)cos(A-B)/2 cosA+cosB=2cos(A+B)/2)sin(A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/

13、cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB (5) 積化和差2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) 15 平面直角坐標系中的有關(guān)知識1對稱性:假設(shè)直角坐標系內(nèi)一點Pa,b,那么P關(guān)于x軸對稱的點為P1a,b,P關(guān)于y軸對稱的點為P2a,b,關(guān)于原點對稱的點為P3a,b。2坐標平移:假設(shè)直角坐標系內(nèi)一點Pa,b向左平移h個單位,坐

14、標變?yōu)镻ah,b,向右平移h個單位,坐標變?yōu)镻ah,b;向上平移h個單位,坐標變?yōu)镻a,bh,向下平移h個單位,坐標變?yōu)镻a,bh.如:點A2,1向上平移2個單位,再向右平移5個單位,那么坐標變?yōu)锳7,1。16 多邊形內(nèi)角和公式多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n2)180ºn3,n是正整數(shù),外角和等于360º17 平行線段成比例定理1平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例。如圖:abc,直線l1與l2分別與直線a、b、c相交與點A、B、C和D、E、F,那么有。2推論:平行于三角形一邊的直線截其他兩邊或兩邊的延長線,所得的對應線段成比例。如圖

15、:ABC中,DEBC,DE與AB、AC相交與點D、E,那么有:18 直角三角形中的射影定理直角三角形中的射影定理:如圖:RtABC中,ACB90o,CDAB于D,那么有:12319 圓的有關(guān)性質(zhì)1垂徑定理:如果一條直線具備以下五個性質(zhì)中的任意兩個性質(zhì):經(jīng)過圓心;垂直弦;平分弦;平分弦所對的劣??;平分弦所對的優(yōu)弧,那么這條直線就具有另外三個性質(zhì)注:具備,時,弦不能是直徑。2兩條平行弦所夾的弧相等。3圓心角的度數(shù)等于它所對的弧的度數(shù)。4一條弧所對的圓周角等于它所對的圓心角的一半。5圓周角等于它所對的弧的度數(shù)的一半。6同弧或等弧所對的圓周角相等。7在同圓或等圓中,相等的圓周角所對的弧相等。890&#

16、186;的圓周角所對的弦是直徑,反之,直徑所對的圓周角是90º,直徑是最長的弦。、9圓內(nèi)接四邊形的對角互補。20 三角形的內(nèi)心與外心1三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心三角形的內(nèi)心就是三內(nèi)角角平分線的交點。2三角形的外接圓的圓心叫做三角形的外心三角形的外心就是三邊中垂線的交點常見結(jié)論:RtABC的三條邊分別為:a、b、cc為斜邊,那么它的內(nèi)切圓的半徑;ABC的周長為,面積為S,其內(nèi)切圓的半徑為r,那么21 弦切角定理及其推論1弦切角:頂點在圓上,并且一邊和圓相交,另一邊和圓相切的角叫做弦切角。如圖:PAC為弦切角。OPBCA2弦切角定理:弦切角度數(shù)等于它所夾的弧的度數(shù)的一半。如果A

17、C是O的弦,PA是O的切線,A為切點,那么推論:弦切角等于所夾弧所對的圓周角作用證明角相等如果AC是O的弦,PA是O的切線,A為切點,那么22 相交弦定理、割線定理和切割線定理1相交弦定理:圓內(nèi)的兩條弦相交,被交點分成的兩條線段長的積相等。 如圖,即:PA·PB = PC·PD2割線定理:從圓外一點引圓的兩條割線,這點到每條割線與圓交點的兩條線段長的積相等。如圖,即:PA·PB = PC·PD3切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項。如圖,即:PC2 = PA·PB 23 面積公式S正×

18、;(邊長)2 S平行四邊形底×高S菱形底×高×(對角線的積),S圓R2 l圓周長2R弧長L S圓柱側(cè)底面周長×高2rh,S全面積S側(cè)S底2rh2r2S圓錐側(cè)×底面周長×母線rb, S全面積S側(cè)S底rbr2初中數(shù)學公式大全1 過兩點有且只有一條直線 2 兩點之間線段最短 3 同角或等角的補角相等 4 同角或等角的余角相等 5 過一點有且只有一條直線和直線垂直 6 直線外一點與直線上各點連接的所有線段中,垂線段最短 7 平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9

19、同位角相等,兩直線平行 10 內(nèi)錯角相等,兩直線平行 11 同旁內(nèi)角互補,兩直線平行 12兩直線平行,同位角相等 13 兩直線平行,內(nèi)錯角相等 14 兩直線平行,同旁內(nèi)角互補 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊 17 三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180° 18 推論1 直角三角形的兩個銳角互余 19 推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和 20 推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角 21 全等三角形的對應邊、對應角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等 23 角邊角公

20、理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等 24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等 25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 27 定理1 在角的平分線上的點到這個角的兩邊的距離相等 28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點的集合 30 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角 31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線

21、、底邊上的中線和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,并且每一個角都等于60° 34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等等角對等邊 35 推論1 三個角都相等的三角形是等邊三角形 36 推論 2 有一個角等于60°的等腰三角形是等邊三角形 37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線等于斜邊上的一半 39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 41 線段

22、的垂直平分線可看作和線段兩端點距離相等的所有點的集合 42 定理1 關(guān)于某條直線對稱的兩個圖形是全等形 43 定理 2 如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應點連線的垂直平分線 44定理3 兩個圖形關(guān)于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上 45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱 46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2 47勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2 ,那么這個三角形是直角三角形 48定理 四邊形的內(nèi)角和等于360°

23、49四邊形的外角和等于360° 50多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于n-2×180° 51推論 任意多邊的外角和等于360° 52平行四邊形性質(zhì)定理1 平行四邊形的對角相等 53平行四邊形性質(zhì)定理2 平行四邊形的對邊相等 54推論 夾在兩條平行線間的平行線段相等 55平行四邊形性質(zhì)定理3 平行四邊形的對角線互相平分 56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 59平行四邊形判定定理4 一組對邊平行相等的四

24、邊形是平行四邊形 60矩形性質(zhì)定理1 矩形的四個角都是直角 61矩形性質(zhì)定理2 矩形的對角線相等 62矩形判定定理1 有三個角是直角的四邊形是矩形 63矩形判定定理2 對角線相等的平行四邊形是矩形 64菱形性質(zhì)定理1 菱形的四條邊都相等 65菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角 66菱形面積=對角線乘積的一半,即S=a×b÷2 67菱形判定定理1 四邊都相等的四邊形是菱形 68菱形判定定理2 對角線互相垂直的平行四邊形是菱形 69正方形性質(zhì)定理1 正方形的四個角都是直角,四條邊都相等 70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分

25、,每條對角線平分一組對角 71定理1 關(guān)于中心對稱的兩個圖形是全等的 72定理2 關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分 73逆定理 如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一 點平分,那么這兩個圖形關(guān)于這一點對稱 74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個角相等 75等腰梯形的兩條對角線相等 76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形 77對角線相等的梯形是等腰梯形 78平行線等分線段定理 如果一組平行線在一條直線上截得的線段 相等,那么在其他直線上截得的線段也相等 79 推論1 經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰 80

26、推論2 經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第 三邊 81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它 的一半 82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的 一半 L=a+b÷2 S=L×h 83 (1)比例的根本性質(zhì) 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84 (2)合比性質(zhì) 如果ab=cd,那么(a±b)b=(c±d)d 85 (3)等比性質(zhì) 如果ab=cd=mn(b+d+n0),那么 (a+c+m)(b+d+n)=ab 86 平行線分線段成比例定理 三條平行線截兩條直線,所

27、得的對應 線段成比例 87 推論 平行于三角形一邊的直線截其他兩邊或兩邊的延長線,所得的對應線段成比例 88 定理 如果一條直線截三角形的兩邊或兩邊的延長線所得的對應線段成比例,那么這條直線平行于三角形的第三邊 89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例 90 定理 平行于三角形一邊的直線和其他兩邊或兩邊的延長線相交,所構(gòu)成的三角形與原三角形相似 91 相似三角形判定定理1 兩角對應相等,兩三角形相似ASA 92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似 93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似SAS 94

28、判定定理3 三邊對應成比例,兩三角形相似SSS 95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似 96 性質(zhì)定理1 相似三角形對應高的比,對應中線的比與對應角平 分線的比都等于相似比 97 性質(zhì)定理2 相似三角形周長的比等于相似比 98 性質(zhì)定理3 相似三角形面積的比等于相似比的平方 99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等 于它的余角的正弦值 100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等 于它的余角的正切值 101圓是定點的距離等于定長的點的集合 102圓的內(nèi)部可以看作是圓心的距

29、離小于半徑的點的集合 103圓的外部可以看作是圓心的距離大于半徑的點的集合 104同圓或等圓的半徑相等 105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半 徑的圓 106和線段兩個端點的距離相等的點的軌跡,是著條線段的垂直 平分線 107到角的兩邊距離相等的點的軌跡,是這個角的平分線 108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距 離相等的一條直線 109定理 不在同一直線上的三點確定一個圓。 110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧 111推論1 平分弦不是直徑的直徑垂直于弦,并且平分弦所對的兩條弧 弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩

30、條弧 平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧 112推論2 圓的兩條平行弦所夾的弧相等 113圓是以圓心為對稱中心的中心對稱圖形 114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等 115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等 116定理 一條弧所對的圓周角等于它所對的圓心角的一半 117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等 118推論2 半圓或直徑所對的圓周角是直角;90°的圓周角所 對的弦是直徑 119

31、推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形 120定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它 的內(nèi)對角 121直線L和O相交 dr 直線L和O相切 d=r 直線L和O相離 dr 122切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線 123切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑 124推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點 125推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心 126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角 127圓的外切四邊形的兩組對邊的和相等 128弦

32、切角定理 弦切角等于它所夾的弧對的圓周角 129推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等 130相交弦定理 圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積 相等 131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的 兩條線段的比例中項 132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割 線與圓交點的兩條線段長的比例中項 133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等 134如果兩個圓相切,那么切點一定在連心線上 135兩圓外離 dR+r 兩圓外切 d=R+r 兩圓相交 R-rdR+r(Rr) 兩圓內(nèi)切 d=R-r(Rr)

33、 兩圓內(nèi)含dR-r(Rr) 136定理 相交兩圓的連心線垂直平分兩圓的公共弦 137定理 把圓分成n(n3): 依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形 經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形 138定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓 139正n邊形的每個內(nèi)角都等于n-2×180°n 140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形 141正n邊形的面積Sn=pnrn2 p表示正n邊形的周長 142正三角形面積3a4 a表示邊長 143如果在一個頂點周圍有k個正n邊形的角,由于這些

34、角的和應為 360°,因此k×(n-2)180°n=360°化為n-2(k-2)=4 144弧長計算公式:L=n兀R180 145扇形面積公式:S扇形=n兀R2360=LR2 146內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r) 147完全平方公式:(a+b)2=a2+2ab+b2                      &

35、#160;       (a-b)2=a2-2ab+b2148平方差公式:(a+b)(a-b)=a2-b2還有一些,大家?guī)脱a充吧 實用工具:常用數(shù)學公式 公式分類 公式表達式 乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|a|+|b| |a-b|a|+|b| |a|b<=>-bab |a-b|a|-|b| -|a|a|a| 一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a 根與系數(shù)的關(guān)系

36、 X1+X2=-b/a X1*X2=c/a 注:韋達定理 判別式 b2-4ac=0 注:方程有兩個相等的實根 b2-4ac>0 注:方程有兩個不等的實根 b2-4ac<0 注:方程沒有實根,有共軛復數(shù)根 三角函數(shù)公式 兩角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論