蘇教版九年級數(shù)學(xué)_第1頁
蘇教版九年級數(shù)學(xué)_第2頁
蘇教版九年級數(shù)學(xué)_第3頁
蘇教版九年級數(shù)學(xué)_第4頁
蘇教版九年級數(shù)學(xué)_第5頁
已閱讀5頁,還剩141頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、蘇教版九年級上冊蘇教版九年級上冊 期末總復(fù)習(xí)典型題期末總復(fù)習(xí)典型題第一章一元二次方程第三章數(shù)據(jù)的集中趨勢和離散程度CONTENT 目 錄第二章對稱圖形圓第四章等可能條件下的概率第一章第一章 一元二次方程一元二次方程1. 一元二次方程及其相關(guān)概念;一元二次方程及其相關(guān)概念;2、配方法、公式法、分解因式法、配方法、公式法、分解因式法3、利用一元二次方程解決有關(guān)的實(shí)際問題,、利用一元二次方程解決有關(guān)的實(shí)際問題,并根據(jù)具體問題的實(shí)際意義檢驗(yàn)結(jié)果的合并根據(jù)具體問題的實(shí)際意義檢驗(yàn)結(jié)果的合理性。理性。2只含有一個未知數(shù)x,并且都可以化為(a、b、c為常數(shù),且)的形式,這樣的整式a方x +bx+c程叫做一元=

2、0a0二次方程定義:定義:22我們把(a、b、c為常數(shù),且a0)稱為一元二次方程的一般形式,其中, 分別稱為二次項(xiàng)、一次項(xiàng)、常數(shù)項(xiàng),ax +bx+c=0axbxcab, 分別稱為二次項(xiàng)系數(shù)和一次項(xiàng)系數(shù)。一元二次方程各項(xiàng)及其系數(shù)一元二次方程各項(xiàng)及其系數(shù):指出下列方程中,那些是一元二次方程?指出下列方程中,那些是一元二次方程?(1) 5x-6=02111x11xx(2) (x-2)(x-3)=x-5 (3) ax+bx+c=0(4) 3x-2=6x(5)(6)請說出你的請說出你的判斷依據(jù)判斷依據(jù) 7x2 - 4 =0 4-7x2=0 x2 + x 8=0(x+2)(x-1)=63x2 - 5x +

3、1 =0 3x2=5x-1常數(shù)常數(shù)項(xiàng)項(xiàng)一次一次項(xiàng)系項(xiàng)系數(shù)數(shù)二次二次項(xiàng)系項(xiàng)系數(shù)數(shù) 一般形式一般形式 方程方程請你完成下列表格請你完成下列表格3-5111-87-40配方法配方法配方法解一元二次方程的解題過程配方法解一元二次方程的解題過程1. 把方程化成一元二次方程的一般形式把方程化成一元二次方程的一般形式2. 把二次項(xiàng)系數(shù)化為把二次項(xiàng)系數(shù)化為13. 把含有未知數(shù)的項(xiàng)放在方程的左邊,不含未知把含有未知數(shù)的項(xiàng)放在方程的左邊,不含未知 數(shù)的項(xiàng)放在方程的右邊。數(shù)的項(xiàng)放在方程的右邊。4. 方程的兩邊同加上一次項(xiàng)系數(shù)一半的平方方程的兩邊同加上一次項(xiàng)系數(shù)一半的平方5. 方程的左邊化成完全平方的形式,方程的右邊

4、方程的左邊化成完全平方的形式,方程的右邊化成非負(fù)數(shù)化成非負(fù)數(shù) 6. 利用直接開平方的方法去解利用直接開平方的方法去解公式法公式法公式法解一元二次方程的解題過程公式法解一元二次方程的解題過程1. 把方程化成一元二次方程的一般形式2. 寫出方程各項(xiàng)的系數(shù)3. 計(jì)算出b2-4ac的值,看b2-4ac的值與0的關(guān)系,若b2-4ac的值小于0,則此方程沒有實(shí)數(shù)根 。4. 當(dāng)b2-4ac的值大于、等于0時(shí), 代入求根公式 計(jì)算出方程的值 4240acaac22-bbbx=()根與系數(shù)的關(guān)系式:根與系數(shù)的關(guān)系式:一元二次方程的根的情況:一元二次方程的根的情況:有兩個不相等的實(shí)數(shù)根方程時(shí)當(dāng)00,0422acb

5、xaxacb:00,0422有兩個相等的實(shí)數(shù)根方程時(shí)當(dāng)acbxaxacb沒有實(shí)數(shù)根方程時(shí)當(dāng)00,0422acbxaxacb.4.004222acbacbxaxacb即來表示用根的判別式的叫做方程我們把代數(shù)式12bxxa 12cxxa分解因式法分解因式法1. 移項(xiàng),使方程的右邊為移項(xiàng),使方程的右邊為0。2. 將方程化為將方程化為 ab=0 的形式的形式 。 3. 令每個因式分別為零,得到兩個一元一次令每個因式分別為零,得到兩個一元一次方程。方程。4. 解這兩個一元一次方程,它們的解就是原解這兩個一元一次方程,它們的解就是原方程的解。方程的解。用不同的方法解方程 x - 3 = 2x 1.公式法2

6、.配方法3.因式分解法已知關(guān)于已知關(guān)于x的一元二次方程的一元二次方程x2-(m+2)x+ m2-2=014 當(dāng)當(dāng)m為何值時(shí),這個方程有兩個相等的實(shí)數(shù)根為何值時(shí),這個方程有兩個相等的實(shí)數(shù)根?并求出并求出這兩個相等的根。這兩個相等的根。解方程解方程 2(1)5(1) 4 0 xx 設(shè)設(shè) ,則原方程可化為則原方程可化為 1xy 2540yy解得:解得:11y 24y 111,14,yxxxx 當(dāng)時(shí),得 =2;當(dāng)y=4時(shí),得 =5.122,5xx所以,原方程的解為:24(35)30 x解方程(3x+5)1. 審清題意,弄清題中的已知量和審清題意,弄清題中的已知量和未知量未知量找找出題中的等量關(guān)系。出題

7、中的等量關(guān)系。 2. 恰當(dāng)?shù)厍‘?dāng)?shù)卦O(shè)設(shè)出未知數(shù),用未知數(shù)的出未知數(shù),用未知數(shù)的代數(shù)式表示未知量。代數(shù)式表示未知量。3. 根據(jù)題中的等量關(guān)系根據(jù)題中的等量關(guān)系列列出方程。出方程。4. 解解方程得出方程的解。方程得出方程的解。5. 檢檢驗(yàn)驗(yàn)看方程的解是否符合題意??捶匠痰慕馐欠穹项}意。6. 作作答答注意單位。注意單位。列方程解應(yīng)用題的解題過程。列方程解應(yīng)用題的解題過程。兩個數(shù)的差等于兩個數(shù)的差等于4,積等于積等于45,求這兩個數(shù)求這兩個數(shù).:,x解 設(shè)較小的數(shù)為根據(jù)題意 得.454 xx.04542xx整理得.9,521xx解得. 5494, 9454xx或. 5, 99 , 5:或這兩個數(shù)為答

8、一次會議上一次會議上,每兩個參加會議的人都互相握了一次手每兩個參加會議的人都互相握了一次手,有人統(tǒng)計(jì)一共握了有人統(tǒng)計(jì)一共握了66次手次手.這次會議到會的人數(shù)是多這次會議到會的人數(shù)是多少少?得根據(jù)題意設(shè)這次到會的人數(shù)為解,:x.6621xx:整理得).,(02231;12223121舍去不合題意xx. 01322 xx:解得.12:人這次到會的人數(shù)為答如圖如圖,在一塊長在一塊長92m,寬寬60m的矩形耕地上挖三條水渠的矩形耕地上挖三條水渠,水渠水渠的寬度都相等的寬度都相等.水渠把耕地分成面積均為水渠把耕地分成面積均為885m2的的6個矩個矩形小塊形小塊,水渠應(yīng)挖多寬水渠應(yīng)挖多寬.得根據(jù)題意設(shè)水渠

9、的寬度解,:xm.885660)292(xx:整理得).,(105; 121舍去不合題意xx, 01051062xx:解得.1:m水渠的寬度為答甲公司前年繳稅甲公司前年繳稅40萬元,今年繳稅萬元,今年繳稅48.4萬元萬元.該公司繳稅該公司繳稅的年平均增長率為多少的年平均增長率為多少?得根據(jù)題意設(shè)每年平均增長率為解,:x. 4 .48)1 (402x:解這個方程).,(01 . 21 . 11%;101 . 1121舍去不合題意xx%.10:每年的平均增長率為答某電冰箱廠每個月的產(chǎn)量都比上個月增長的百分?jǐn)?shù)相同。某電冰箱廠每個月的產(chǎn)量都比上個月增長的百分?jǐn)?shù)相同。已知該廠今年已知該廠今年4月份的電冰

10、箱產(chǎn)量為月份的電冰箱產(chǎn)量為5萬臺,萬臺,6月份比月份比5月份月份多生產(chǎn)了多生產(chǎn)了1.2萬臺,求該廠今年產(chǎn)量的月平均增長率為多萬臺,求該廠今年產(chǎn)量的月平均增長率為多少少?得根據(jù)題意均增長率為設(shè)該廠今年產(chǎn)量的月平解,:x. 2 . 115)1 ( 52xx:整理得).,(02 . 11075%;202 . 0107521舍去不合題意xx. 0625252xx:解得%.20:增長率為該廠今年產(chǎn)量的月平均答某水果批發(fā)商場經(jīng)銷一種高檔水果某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利如果每千克盈利10元元,每天可售出每天可售出500千克千克,經(jīng)市場調(diào)查發(fā)現(xiàn)經(jīng)市場調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情在進(jìn)貨價(jià)不變的情

11、況下況下,若每千克漲價(jià)若每千克漲價(jià)1元元,日銷售量減少日銷售量減少20千克千克,現(xiàn)該商場要現(xiàn)該商場要保證每天盈利保證每天盈利6000元元,同時(shí)又要使顧客得到實(shí)惠同時(shí)又要使顧客得到實(shí)惠,那么每那么每千克應(yīng)漲價(jià)多少元千克應(yīng)漲價(jià)多少元?解解:設(shè)每千克水果應(yīng)漲價(jià)設(shè)每千克水果應(yīng)漲價(jià)x元元, 依題意得依題意得: (500-20 x)(10+x)=6000 整理得整理得: x2-15x+50=0 解這個方程得解這個方程得:x1=5 x2=10 要使顧客得到實(shí)惠應(yīng)取要使顧客得到實(shí)惠應(yīng)取x=5 答答:每千克水果應(yīng)漲價(jià)每千克水果應(yīng)漲價(jià) 5元元. 某商場銷售一批名牌襯衫某商場銷售一批名牌襯衫,現(xiàn)在平均每天能售出現(xiàn)在

12、平均每天能售出20件件,每件盈利每件盈利40元元.為了盡快減少庫存為了盡快減少庫存,商場決定采取降商場決定采取降價(jià)措施價(jià)措施.經(jīng)調(diào)查發(fā)現(xiàn)經(jīng)調(diào)查發(fā)現(xiàn):如果這種襯衫的售價(jià)每降低如果這種襯衫的售價(jià)每降低1元元時(shí)時(shí),平均每天能多售出平均每天能多售出2件件.商場要想平均每天盈利商場要想平均每天盈利1200元元,每件襯衫應(yīng)降價(jià)多少元每件襯衫應(yīng)降價(jià)多少元?得根據(jù)題意元設(shè)每件襯衫應(yīng)降價(jià)解,:x.1200)1220)(40(xx. 020030:2xx整理得得解這個方程,.10,2021xx.20,:元應(yīng)降價(jià)為了盡快減少庫存答.40220,60220 xx或某果園有某果園有100棵桃樹棵桃樹,一棵桃樹平均結(jié)一棵

13、桃樹平均結(jié)1000個桃子個桃子,現(xiàn)準(zhǔn)備多現(xiàn)準(zhǔn)備多種一些桃樹以提高產(chǎn)量種一些桃樹以提高產(chǎn)量.試驗(yàn)發(fā)現(xiàn)試驗(yàn)發(fā)現(xiàn),每多種一棵桃樹每多種一棵桃樹,每棵棵每棵棵桃樹的產(chǎn)量就會減少桃樹的產(chǎn)量就會減少2個個.如果要使產(chǎn)量增加如果要使產(chǎn)量增加15.2%,那么應(yīng)那么應(yīng)多種多少棵桃樹多種多少棵桃樹?得根據(jù)題意棵設(shè)多種桃樹解,:x.%2 .1511000100)121000)(100(xx. 0760040:2xx整理得得解這個方程,.380,2021xx.38020:棵棵或應(yīng)多種桃樹答 將一條長為將一條長為56cm的鐵絲剪成兩段的鐵絲剪成兩段,并把每一段圍成一個正并把每一段圍成一個正方形方形.(1).要使這兩個正

14、方形的面積之和等于要使這兩個正方形的面積之和等于100cm2,該怎樣剪該怎樣剪?(2).要使這兩個正方形的面積之和等于要使這兩個正方形的面積之和等于196cm2,該怎樣剪該怎樣剪?(3).這兩個正方形的面積之和可能等于這兩個正方形的面積之和可能等于200m2嗎嗎? 得根據(jù)題意設(shè)剪下的一段為解,.1:xcm:整理得.32245656;24325656xx或, 0768562xx:解得.24,3221xx.100,2432:2cmcmcm于可使正方形的面積和等或剪下的一段為答.100456)4(22xx將一將一條長為條長為56cm的鐵絲剪成兩段的鐵絲剪成兩段,并把每一段圍成一個正并把每一段圍成一個

15、正方形方形.(1).要使這兩個正方形的面積之和等于要使這兩個正方形的面積之和等于100cm2,該怎樣剪該怎樣剪?(2).要使這兩個正方形的面積之和等于要使這兩個正方形的面積之和等于196cm2,該怎樣剪該怎樣剪?(3).這兩個正方形的面積之和可能等于這兩個正方形的面積之和可能等于200m2嗎嗎? 得根據(jù)題意設(shè)剪下的一段為解,.2:xcm:整理得, 0562xx:解得.196,:2cm面積能等于可圍成一個正方形的其不剪答.196456)4(22xx.,0,5621舍去不合題意xx將一條長為將一條長為56cm的鐵絲剪成兩段的鐵絲剪成兩段,并把每一段圍成一個正并把每一段圍成一個正方形方形.(1).要

16、使這兩個正方形的面積之和等于要使這兩個正方形的面積之和等于100cm2,該怎樣剪該怎樣剪?(2).要使這兩個正方形的面積之和等于要使這兩個正方形的面積之和等于196cm2,該怎樣剪該怎樣剪?(3).這兩個正方形的面積之和可能等于這兩個正方形的面積之和可能等于200m2嗎嗎? 得根據(jù)題意設(shè)剪下的一段為解,.3:xcm.200456)4(22xx:整理得.,081828;568182821舍去均不合題意xx, 034562xx:解得.818282818256x.200,:2cm等于正方形的面積和不可能不能剪答A北東B 某軍艦以某軍艦以20節(jié)的速度由西向東航行節(jié)的速度由西向東航行,一艘電子偵察船以一

17、艘電子偵察船以30節(jié)的速度由南向北航行節(jié)的速度由南向北航行,它能偵察出周圍它能偵察出周圍50海里海里(包括包括50海里海里)范圍內(nèi)的目標(biāo)范圍內(nèi)的目標(biāo).如圖如圖,當(dāng)該軍艦行至當(dāng)該軍艦行至A處時(shí)處時(shí),電子偵電子偵察船正位于察船正位于A處的正南方向的處的正南方向的B處處, AB=90海里海里.如果軍艦如果軍艦和偵察船仍按原來速度沿原方向繼續(xù)航行和偵察船仍按原來速度沿原方向繼續(xù)航行,那么航行途那么航行途中偵察船能否偵察到這艘軍艦中偵察船能否偵察到這艘軍艦 ?如果能如果能,最早何時(shí)能偵察最早何時(shí)能偵察到到?如果不能如果不能,請說明理由請說明理由.BA北東BB得根據(jù)題意小時(shí)能偵察到軍艦設(shè)電子偵察船最早需要

18、解,:x .5020)3090(222x:整理得.1328; 221xx. 05654132xx:解得.2:時(shí)能偵察到軍艦電子偵察船最早能在答h第二章第二章 對稱圖形對稱圖形圓圓學(xué)習(xí)目標(biāo):學(xué)習(xí)目標(biāo):1、系統(tǒng)熟悉圓的有關(guān)概念。、系統(tǒng)熟悉圓的有關(guān)概念。2、鞏固有關(guān)圓的一些性質(zhì)和定理。、鞏固有關(guān)圓的一些性質(zhì)和定理。3、進(jìn)一步掌握應(yīng)用圓的有關(guān)知識解、進(jìn)一步掌握應(yīng)用圓的有關(guān)知識解決某些數(shù)學(xué)問題。決某些數(shù)學(xué)問題。本章知識結(jié)構(gòu)圖本章知識結(jié)構(gòu)圖圓的基本性質(zhì)圓的基本性質(zhì)圓圓圓的對稱性圓的對稱性弧、弦圓心角之間的關(guān)系弧、弦圓心角之間的關(guān)系同弧上的圓周角與圓心角的關(guān)系同弧上的圓周角與圓心角的關(guān)系與圓有關(guān)的位置關(guān)系與

19、圓有關(guān)的位置關(guān)系正多邊形和圓正多邊形和圓有關(guān)圓的計(jì)算有關(guān)圓的計(jì)算點(diǎn)和圓的位置關(guān)系點(diǎn)和圓的位置關(guān)系切線切線直線和圓的位置關(guān)系直線和圓的位置關(guān)系三角形的外接圓三角形的外接圓三角形內(nèi)切圓三角形內(nèi)切圓等分圓等分圓圓和圓的位置關(guān)系圓和圓的位置關(guān)系弧長弧長扇形的面積扇形的面積圓錐的側(cè)面積和全面積圓錐的側(cè)面積和全面積學(xué)習(xí)要求:1、圓是如何定義的?2、同圓或等圓中的弧、弦、圓心角有什么關(guān)系?垂直于弦的直徑有什么性質(zhì)?一條弧所對的圓周角和它所對的圓心角有什么關(guān)系?3、點(diǎn)和圓有怎樣的位置關(guān)系?直線和圓呢?圓和圓呢?怎樣判斷這些位置關(guān)系呢?4、圓的切線有什么性質(zhì)?如何判斷一條直線是圓的切線?5、正多邊形和圓有什么關(guān)

20、系?6、如何計(jì)算弧長、扇形面積、圓錐的側(cè)面積和全面積。一一.圓的基本概念圓的基本概念:1.圓的定義圓的定義:在一個平面內(nèi),線段繞它的一個固在一個平面內(nèi),線段繞它的一個固定端點(diǎn)旋轉(zhuǎn)一周,另一個端點(diǎn)所形成的圖形叫做定端點(diǎn)旋轉(zhuǎn)一周,另一個端點(diǎn)所形成的圖形叫做圓;到定點(diǎn)的距離等于定長的點(diǎn)的集合叫做圓圓;到定點(diǎn)的距離等于定長的點(diǎn)的集合叫做圓. 2.有關(guān)概念有關(guān)概念:(1)弦、直徑弦、直徑(圓中最長的弦圓中最長的弦)(2)弧、優(yōu)弧、劣弧、等弧弧、優(yōu)弧、劣弧、等弧O二二. 圓的基本性質(zhì)圓的基本性質(zhì)1.圓的對稱性圓的對稱性:(1)圓是軸對稱圖形圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是經(jīng)過圓心的每一條直線都是它

21、的對稱軸它的對稱軸.圓有無數(shù)條對稱軸圓有無數(shù)條對稱軸.(2)圓是中心對稱圖形圓是中心對稱圖形,并且繞圓心旋轉(zhuǎn)任何一并且繞圓心旋轉(zhuǎn)任何一個角度都能與自身重合個角度都能與自身重合,即圓具有旋轉(zhuǎn)不變性即圓具有旋轉(zhuǎn)不變性.2.垂徑定理垂徑定理:垂直于弦的直徑平分這條弦垂直于弦的直徑平分這條弦,并且并且平分弦所對的兩條弧平分弦所對的兩條弧.ADBPCCD是圓O的直徑,CDABAP=BP,ACBC=ADBD=3.同圓或等圓中圓心角、弧、弦之間的關(guān)系同圓或等圓中圓心角、弧、弦之間的關(guān)系:(1)在同圓或等圓中,如果圓心角相等,那么它所對的弧相等,所對的弦相等.(2)在同圓或等圓中,如果兩條弧相等,那么它所對的

22、圓心角相等,所對的弦相等.(3)在同圓或等圓中,如果兩條弦相等,那么它所對的弧相等,所對的圓心角相等.ABDCO COD =AOBABCD= AB=CD1、如圖、如圖,已知已知 O的半徑的半徑OA長為長為5,弦弦AB的長的長8,OCAB于于C,則則OC的長的長為為 _.OABC3提示:提示:AC=BC弦心距半徑半弦長反思:反思:在在 O中,若中,若 O的半徑的半徑r、 圓心到弦的距離圓心到弦的距離d、弦長、弦長a中,中, 任意知道兩個量,可根據(jù)任意知道兩個量,可根據(jù)定理求出第三個量:定理求出第三個量:CDBAO2 2:如圖,圓:如圖,圓O O的弦的弦ABAB8 8 ,直徑,直徑CEABCEAB

23、于于D D,DCDC2 2,求,求半徑半徑OCOC的的長。長。DCEOAB垂徑3、如圖,、如圖,P為為 O的弦的弦BA延長線上一點(diǎn),延長線上一點(diǎn), PAAB2,PO5,求,求 O的半徑。的半徑。關(guān)于弦的問題,常常需關(guān)于弦的問題,常常需要要過圓心作弦的垂線段過圓心作弦的垂線段,這是一條非常重要的這是一條非常重要的輔輔助線助線。圓心到弦的距離、半徑、圓心到弦的距離、半徑、弦長弦長構(gòu)成構(gòu)成直角三角形直角三角形,便將問題轉(zhuǎn)化為直角三便將問題轉(zhuǎn)化為直角三角形的問題。角形的問題。MAPBOA 4.圓周角:定義定義:頂點(diǎn)在圓周上,兩邊和圓相交的角,頂點(diǎn)在圓周上,兩邊和圓相交的角,叫做圓周角叫做圓周角.性質(zhì)性

24、質(zhì):(1)在同圓或等圓中在同圓或等圓中,同弧所對的圓周角相等,同弧所對的圓周角相等,都等于它所對的圓心角的一半都等于它所對的圓心角的一半.OABCBAC= BOC12OBADEC在同圓或等圓中在同圓或等圓中, 如果兩個圓周角相等,那么它所如果兩個圓周角相等,那么它所對的弧一定相等對的弧一定相等.圓周角的性質(zhì)圓周角的性質(zhì)(2)ADB與與AEB 、ACB 是同弧是同弧所對的圓周角所對的圓周角ADB=AEB =ACB性質(zhì)性質(zhì) 3:半圓或直徑所對的圓周角是直角,半圓或直徑所對的圓周角是直角,900的圓周角所對的弦是直徑的圓周角所對的弦是直徑.OABCAB是是 O的直徑的直徑 ACB=900圓周角的性質(zhì)

25、圓周角的性質(zhì):154、如、如圖,在圖,在 O中,弦中,弦AB等于等于 O的半徑,的半徑,OCAB交交 O于于C,則,則ABC=_度度ABCOD3.6作圓的直徑與找作圓的直徑與找90度的圓周度的圓周角也是圓里常用的輔助線角也是圓里常用的輔助線5、如、如圖在圖在 O中弦中弦AB1.8cm,圓周角圓周角ACB30O,則則 O的直徑等于的直徑等于cm7.如圖,如圖,AB是是 O的直徑的直徑,BD是是 O的弦,延長的弦,延長BD到到點(diǎn)點(diǎn)C,使使DC=BD,連接連接AC交交 O與點(diǎn)與點(diǎn)F.(1)AB與與AC的大小有什么的大小有什么關(guān)系關(guān)系?為什么為什么?(2)按角的大小分類)按角的大小分類, 請你請你判斷

26、判斷ABC屬于哪一類屬于哪一類三角形,并三角形,并說明說明理由理由 。O OF FD DC CB BA A6. 在在 O中,弦中,弦AB所對的圓心角所對的圓心角AOB=100,則弦,則弦AB所對的圓周角為所對的圓周角為_.500或或1300 8.如圖在比賽中如圖在比賽中,甲帶球向?qū)Ψ角蜷T甲帶球向?qū)Ψ角蜷TPQ進(jìn)攻進(jìn)攻,當(dāng)他帶球當(dāng)他帶球沖到?jīng)_到A點(diǎn)時(shí)點(diǎn)時(shí),同伴乙已經(jīng)助攻沖到同伴乙已經(jīng)助攻沖到B點(diǎn)點(diǎn),此時(shí)甲是直接射此時(shí)甲是直接射門好門好,還是將球傳給乙還是將球傳給乙,讓乙射門好讓乙射門好?為什么為什么?PQAB(2)點(diǎn)在圓上點(diǎn)在圓上(3)點(diǎn)在圓外點(diǎn)在圓外(1)點(diǎn)在圓內(nèi)點(diǎn)在圓內(nèi)1.點(diǎn)和圓的位置關(guān)系點(diǎn)和

27、圓的位置關(guān)系A(chǔ)CB如果規(guī)定點(diǎn)與圓心的距離為如果規(guī)定點(diǎn)與圓心的距離為d,圓的半徑為圓的半徑為r,則則d與與r的大小關(guān)系為的大小關(guān)系為:點(diǎn)與圓的位置關(guān)系點(diǎn)與圓的位置關(guān)系 d與與r的關(guān)系的關(guān)系 點(diǎn)在圓內(nèi)點(diǎn)在圓內(nèi)點(diǎn)在圓上點(diǎn)在圓上點(diǎn)在圓外點(diǎn)在圓外drdrdr三三.與圓有關(guān)的位置關(guān)系與圓有關(guān)的位置關(guān)系:9.在在Rt ABC中,中,C=90,BC=3cm,AC=4cm,D為為AB的中點(diǎn),的中點(diǎn),E為為AC的中點(diǎn),以的中點(diǎn),以B為圓心,為圓心,BC為半徑作為半徑作 B,問,問:(1)A、C、D、E與與 B的位置關(guān)系如何?的位置關(guān)系如何?(2)AB、AC與與 B的位置關(guān)系如何?的位置關(guān)系如何?EDCAB10.如

28、圖如圖,OA是是 O的半徑的半徑,已知已知AB=OA,試探索當(dāng)試探索當(dāng)OAB的大小如何變化時(shí)點(diǎn)的大小如何變化時(shí)點(diǎn)B在圓內(nèi)在圓內(nèi)?點(diǎn)點(diǎn)B在圓上在圓上?點(diǎn)點(diǎn)B在圓外在圓外?ABO2.直線和圓的位置關(guān)系直線和圓的位置關(guān)系:OOOlll(1) 相離相離:(2) 相切相切:(3) 相交相交:一條直線與一個圓沒有公共點(diǎn)一條直線與一個圓沒有公共點(diǎn),叫做直線與這個叫做直線與這個圓相離圓相離.一條直線與一個圓只有一個公共點(diǎn)一條直線與一個圓只有一個公共點(diǎn),叫做直線與這個叫做直線與這個圓相切圓相切.一條直線與一個圓有兩個公共點(diǎn)一條直線與一個圓有兩個公共點(diǎn),叫做直線與這叫做直線與這個圓相交個圓相交.OOl(1)當(dāng)直線

29、與圓相離時(shí)當(dāng)直線與圓相離時(shí)dr;(2)當(dāng)直線與圓相切時(shí)當(dāng)直線與圓相切時(shí)d =r;(3)當(dāng)直線與圓相交時(shí)當(dāng)直線與圓相交時(shí)dr.直線與圓位置關(guān)系的識別直線與圓位置關(guān)系的識別:drldrOldr設(shè)圓的半徑為設(shè)圓的半徑為r,圓心到直線的距離為圓心到直線的距離為d,則則:1.與圓有一個公共點(diǎn)的直線。與圓有一個公共點(diǎn)的直線。2.圓心到直線的距離等于圓的半徑的直線是圓圓心到直線的距離等于圓的半徑的直線是圓的切線。的切線。3.經(jīng)過半徑的外端且垂直于這條半徑的直線是經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線。圓的切線。OAlOA是半徑是半徑,OA l l直線直線l l是是 O的切線的切線.切線的性質(zhì)切線的性

30、質(zhì):(1)圓的切線垂直于經(jīng)過切點(diǎn)的半徑圓的切線垂直于經(jīng)過切點(diǎn)的半徑.(2)圓心到切線的距離等于圓的半徑圓心到切線的距離等于圓的半徑.(3)直線與圓有唯一的公共點(diǎn)直線與圓有唯一的公共點(diǎn).OAl OA l l直線直線l l是是 O的切線的切線,切點(diǎn)為切點(diǎn)為A切線長定理: 從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等;這點(diǎn)與圓心的連線平分這兩條切線的夾角。BAPOPA、PB為為 O的切線的切線PA=PB,APO= BPO過過D點(diǎn)作點(diǎn)作DF AC于于F點(diǎn),點(diǎn),然后證明然后證明DF等于圓等于圓D的半的半徑徑BD 12.如如圖,圖,AB是是 O的直徑,點(diǎn)的直徑,點(diǎn)D在在AB的延長線上的延長線上,且且BD=O

31、B,點(diǎn)點(diǎn)C在在 O上上,CAB=30.(1)CD是是 O的切線嗎?說明你的理由的切線嗎?說明你的理由;(2)AC=_,請給出合理的解釋,請給出合理的解釋.A B C D O 只要連接只要連接OC,而后,而后證明證明OC垂直垂直CD不在同一直線上的三點(diǎn)確定一個圓.OCBA三角形的外接圓與內(nèi)切圓:三角形的外心就是三角形各邊垂直平分線的交點(diǎn).OABC三角形的內(nèi)心就是三角形各角平分線的交點(diǎn).等邊三角形的外心與內(nèi)心重合等邊三角形的外心與內(nèi)心重合.特別的特別的:內(nèi)切圓半徑與外接圓半徑的比是內(nèi)切圓半徑與外接圓半徑的比是1:2.OABCD二、過三點(diǎn)的圓及外接圓1.過一點(diǎn)的圓有過一點(diǎn)的圓有_個個2.過兩點(diǎn)的圓有

32、過兩點(diǎn)的圓有_個,這些圓的圓心的個,這些圓的圓心的都都在在_上上.3.過三點(diǎn)的圓有過三點(diǎn)的圓有_個個4.如何作過不在同一直線上的三點(diǎn)的圓(或三如何作過不在同一直線上的三點(diǎn)的圓(或三角形的外接圓、找外心、破鏡重圓、到三個村角形的外接圓、找外心、破鏡重圓、到三個村莊距離相等)莊距離相等)5.銳角三角形的外心在三角形銳角三角形的外心在三角形_,直角三角,直角三角形的外心在形的外心在三角形三角形_,鈍角三角,鈍角三角形形的外心在三角形的外心在三角形_。無數(shù)無數(shù)無數(shù)無數(shù)0或或1內(nèi)內(nèi)外外連結(jié)著兩點(diǎn)的線段的垂直平分線連結(jié)著兩點(diǎn)的線段的垂直平分線在斜邊的中點(diǎn)上在斜邊的中點(diǎn)上OCAB經(jīng)過三角形的三個頂點(diǎn)的圓叫做

33、三角形的經(jīng)過三角形的三個頂點(diǎn)的圓叫做三角形的外接圓外接圓,外接圓的圓心叫做三角形的外接圓的圓心叫做三角形的外心外心,三角形叫做圓的三角形叫做圓的內(nèi)接三角形內(nèi)接三角形。問題問題1:如何作三角形的外接圓?如何找三角:如何作三角形的外接圓?如何找三角形的外心?形的外心?問題問題2:三角形的外心一定:三角形的外心一定 在三角形內(nèi)嗎?在三角形內(nèi)嗎?OCABC90OCABABC是銳角三角形是銳角三角形OCABABC是鈍角三角形是鈍角三角形14.如圖如圖,是某機(jī)械廠的一種零件平面圖是某機(jī)械廠的一種零件平面圖.(1)請你根據(jù)所學(xué)的知識找出該零件所在圓的圓心請你根據(jù)所學(xué)的知識找出該零件所在圓的圓心(要要求正確畫

34、圖求正確畫圖,不寫做法不寫做法,保留痕跡保留痕跡).(2)若弦若弦AB=80cm,AB的中點(diǎn)的中點(diǎn)C到到AB的距離是的距離是20cm,求求該零件所在的半徑長該零件所在的半徑長.ABEF HG4.如圖如圖, O為為ABC的內(nèi)切圓,切點(diǎn)分別為的內(nèi)切圓,切點(diǎn)分別為D,E,F(xiàn),P是弧是弧FDE上的一點(diǎn),若上的一點(diǎn),若A+ C=110度,則度,則FPE=_度度CoDEABFP5 5如圖,已知如圖,已知ABC的三邊長分別為的三邊長分別為AB=4cm,BC=5cm,AC=6cm,O是是ABC的內(nèi)切圓,切點(diǎn)分的內(nèi)切圓,切點(diǎn)分別是別是E、F、G,則,則AE= ,BF= ,CG= 。7如圖,如圖, M與與x 軸相

35、交于點(diǎn)軸相交于點(diǎn)A(2,0),),B(8,0),與),與y軸相切于點(diǎn)軸相切于點(diǎn)C,求圓心,求圓心M的坐標(biāo)的坐標(biāo)AO y.MCxB8.如圖如圖,正方形正方形ABCD的邊長為的邊長為2,P是線段是線段BC上的一上的一個動點(diǎn)個動點(diǎn).以以AB為直徑作圓為直徑作圓O,過點(diǎn)過點(diǎn)P作圓作圓O的切線交的切線交AD于點(diǎn)于點(diǎn)F,切點(diǎn)為切點(diǎn)為E.DCBAFPOE(1)求四邊形求四邊形CDFP的周長的周長.(2)設(shè)設(shè)BP=x,AF=y,求求y關(guān)于關(guān)于x的函數(shù)解析式的函數(shù)解析式.Q熟練掌握以下的結(jié)論熟練掌握以下的結(jié)論)(,則)();(,其中)則內(nèi)切圓半徑(,的對邊,面積為、中分別為、設(shè)cbarCcbappsrSCBAA

36、BCcba21902211rr記?。涸诰唧w計(jì)算時(shí)往往用到的是面積法和方程思想圓與圓的位置關(guān)系圓與圓的位置關(guān)系:.外離外離外切外切相交相交內(nèi)切內(nèi)切內(nèi)含內(nèi)含O1O2O1O2O1O2O2O1O1O2 兩圓的位置關(guān)系數(shù)量關(guān)系及識別方法 外離 外切 相交 內(nèi)切 內(nèi)含dR+rd=R+rd=R-rdR-rR-rdR+r1.如圖一塊鐵板,上面有如圖一塊鐵板,上面有A、B、C三個點(diǎn),經(jīng)測量,三個點(diǎn),經(jīng)測量,AB=13cm,BC=14cm,CA=9cm,以各頂點(diǎn)為圓心的三個圓以各頂點(diǎn)為圓心的三個圓兩兩外切。求各圓的半徑。兩兩外切。求各圓的半徑。ACB解:設(shè)三個圓的半徑分別為解:設(shè)三個圓的半徑分別為 則有則有解得:

37、解得:r1=4cm, r2=9cm, r3=5cm,123,r r r12233113149rrrrrr2. 如圖,如圖,AB是圓是圓O的直徑,以的直徑,以O(shè)A為直徑的圓為直徑的圓C與與圓圓O的弦的弦AD相交于點(diǎn)相交于點(diǎn)E.你認(rèn)為圖中有哪些相等的你認(rèn)為圖中有哪些相等的線段?為什么?線段?為什么? A D B O C E 3.如圖如圖 O與與 O1交于交于A、B兩點(diǎn)兩點(diǎn),O1點(diǎn)在點(diǎn)在 O上,上,AC是是 O直徑,直徑,AD是是 O1直徑,連結(jié)直徑,連結(jié)CD,求證,求證:AC=CD。B1ACOOD四四 正多邊形和圓正多邊形和圓(1).有關(guān)概念(2).常用的方法(3).正多邊形的作圖EFCD.邊心距

38、r中心角邊OABCRd12a2221()2adRa1.圓的周長和面積公式2.弧長的計(jì)算公式3.扇形的面積公式S=360nr2L=180nr=12lrS或五五.圓中的有關(guān)計(jì)算圓中的有關(guān)計(jì)算:周長C=2r面積s=r2Or4.圓柱的展開圖圓柱的展開圖:DBCArhS側(cè)側(cè) =2r hS全全=2r h+2 r25.圓錐的展開圖:底面?zhèn)让鎍ahrS側(cè)側(cè) =r aS全全=r a+ r21、 扇形扇形AOB的半徑為的半徑為12cm,AOB=120,求扇形的面求扇形的面積和周長積和周長.2、 如圖如圖,當(dāng)半徑為當(dāng)半徑為30cm的轉(zhuǎn)動輪轉(zhuǎn)過的轉(zhuǎn)動輪轉(zhuǎn)過120時(shí)時(shí),傳送帶傳送帶上的物體上的物體A平移的距離為平移的距

39、離為_.AlA BC l4.如下圖,所示的三角形鐵皮余料,剪下扇形制成圓錐如下圖,所示的三角形鐵皮余料,剪下扇形制成圓錐形玩具,已知形玩具,已知C=90度,度,AC=BC=4cm,使剪下的扇形,使剪下的扇形邊緣半徑在三角形邊上,弧與其他邊相切,設(shè)計(jì)裁剪邊緣半徑在三角形邊上,弧與其他邊相切,設(shè)計(jì)裁剪的方案圖,直接寫出扇形的半徑長。的方案圖,直接寫出扇形的半徑長。ACBACBACBBCAOO12 2r 24r 32r 44 24r 5、扇形的面積是它所在圓的面積的、扇形的面積是它所在圓的面積的 ,這個扇,這個扇形的圓心角的度數(shù)是形的圓心角的度數(shù)是_.322406、 圓錐的母線為圓錐的母線為5cm,

40、底面半徑為,底面半徑為3cm,則圓錐的表,則圓錐的表面積為面積為_24cm27、已知:在、已知:在RtABCABC, , 求以求以AB為軸旋轉(zhuǎn)一周所得到的幾何體的全面積。為軸旋轉(zhuǎn)一周所得到的幾何體的全面積。cm5BC,cm13AB.90C0 分析分析:以以AB為軸旋轉(zhuǎn)一周所得到的幾何體是由公共底為軸旋轉(zhuǎn)一周所得到的幾何體是由公共底面的兩個圓錐所組成的幾何體,因此求全面積面的兩個圓錐所組成的幾何體,因此求全面積就是求兩個圓錐的側(cè)面積。就是求兩個圓錐的側(cè)面積。 D C B A9.如圖,圓錐的底面半徑為如圖,圓錐的底面半徑為2cm,母線長為,母線長為8cm,一只螞蟻從底面圓周上一點(diǎn)一只螞蟻從底面圓周

41、上一點(diǎn)A出發(fā),沿圓錐側(cè)面出發(fā),沿圓錐側(cè)面爬行一周回到爬行一周回到A點(diǎn),求螞蟻爬行的最短路線長是點(diǎn),求螞蟻爬行的最短路線長是多少?多少?BAOAECBAOD常見的基本圖形及結(jié)論常見的基本圖形及結(jié)論:1.如圖如圖,在以在以O(shè)為圓心的兩個為圓心的兩個同心圓中同心圓中,大圓的弦大圓的弦AB交小交小圓于圓于C、D,則則:AC=BD若大圓的弦切小圓于若大圓的弦切小圓于C,則則OACBAC=BC兩圓之間的環(huán)形面積兩圓之間的環(huán)形面積S= AB2411.如圖如圖,以等腰以等腰ABC的腰的腰AB為直徑作為直徑作 O交底交底邊邊BC于點(diǎn)于點(diǎn)D,則則:OCBAD點(diǎn)點(diǎn)D是是BC的中點(diǎn)的中點(diǎn).OPBADC2.如圖如圖,已

42、知已知PA、PB切圓切圓O于點(diǎn)于點(diǎn)A,B,過弧過弧AB上任一點(diǎn)上任一點(diǎn)E作圓作圓O的切線的切線,交交PA,PB于點(diǎn)于點(diǎn)C,D,則則:(1) PCD的周長的周長=2PA(2) COD= 900- APB21EOABCOABCDFEDFE3.如圖如圖, ABC各邊分別切各邊分別切圓圓O于點(diǎn)于點(diǎn)D、E、F.(1) DEF= 900- A21(3) SABC= (a+b+c)r21(2) BOC= 900+ A21ABCOEFD4.在在Rt ABC中中, ACB是直角是直角,三邊分別是三邊分別是a、b、c,內(nèi)切圓半徑是內(nèi)切圓半徑是r,則則:內(nèi)切圓半徑內(nèi)切圓半徑r=a+b-c25.如圖如圖,AB是圓是圓

43、O的直徑的直徑,AD,BC,DC均為切線均為切線,則則:(1)DC=AD+BC(2) DOC=900OBDCAE與圓有關(guān)的輔助線的作法:與圓有關(guān)的輔助線的作法:輔助線,輔助線, 莫莫亂添,亂添, 規(guī)律規(guī)律方法記心間方法記心間;圓圓半徑,半徑, 不起眼不起眼, 角角的計(jì)算常要連的計(jì)算常要連,構(gòu)成構(gòu)成等腰解疑難;等腰解疑難;切點(diǎn)切點(diǎn)和圓心,和圓心, 連結(jié)連結(jié)要領(lǐng)先;要領(lǐng)先; 遇到遇到直徑想直角,直徑想直角, 靈活靈活應(yīng)用才方便。應(yīng)用才方便。弦與弦心距,弦與弦心距, 親密親密緊相連;緊相連;第三章第三章 數(shù)據(jù)的集中趨勢和離散程度數(shù)據(jù)的集中趨勢和離散程度1. 算術(shù)平均數(shù)算術(shù)平均數(shù):一組數(shù)據(jù)的總和與這組

44、數(shù)據(jù)的個數(shù)之比一組數(shù)據(jù)的總和與這組數(shù)據(jù)的個數(shù)之比叫做這組數(shù)據(jù)的叫做這組數(shù)據(jù)的算術(shù)平均數(shù)算術(shù)平均數(shù).計(jì)算公式計(jì)算公式:x =x1+x2+ x3+ + xnn算術(shù)平均數(shù)算術(shù)平均數(shù)是反映一組數(shù)據(jù)中數(shù)據(jù)總體的平均大小是反映一組數(shù)據(jù)中數(shù)據(jù)總體的平均大小情況的量情況的量.x =1nx0 + 00201xxxxxxn 例例 在一次校園網(wǎng)頁設(shè)計(jì)比賽中,在一次校園網(wǎng)頁設(shè)計(jì)比賽中,8位評委對甲、乙兩名選手的評位評委對甲、乙兩名選手的評分情況如下:分情況如下:1號2號3號4號5號6號7號8號甲9.09.09.29.89.89.29.59.2乙9.49.69.28.09.59.09.29.4分析:確定選手的最后得分有

45、兩種方案:一是將評委分析:確定選手的最后得分有兩種方案:一是將評委評分的平均數(shù)作為最后得分;二是將評委的評分中一評分的平均數(shù)作為最后得分;二是將評委的評分中一個最高分與一個最低分去掉后的平均數(shù)作為最后得分個最高分與一個最低分去掉后的平均數(shù)作為最后得分.1y9.029.239.5.61y9.09.229.429.5.26. 甲甲方案二:去掉一個最高分,去掉一個最低分,() 9 18(分),() 98(分),此方案乙的成績比甲高,與大多數(shù)評委的觀點(diǎn)相符。因此,按方案二評定選手的最后得分較可取1x8.89.229.3 39.59.8.281x8.09.09.229.429.59.6.8. 甲乙方案一

46、:() 9 1(分)() 916(分)此方案,甲的成績比乙高考考你:考考你:有一篇報(bào)道說,有一個身高有一篇報(bào)道說,有一個身高1.7米的人在米的人在平均平均水深只有水深只有0.5米的一條米的一條河流中淹死了,你感覺奇怪嗎?河流中淹死了,你感覺奇怪嗎? 問題情景問題情景老師對同學(xué)們每學(xué)期總評成績是這樣做的老師對同學(xué)們每學(xué)期總評成績是這樣做的: 平時(shí)練習(xí)占平時(shí)練習(xí)占 30%, 期中考試占期中考試占30%, 期末考試占期末考試占40%. 某同學(xué)平時(shí)練習(xí)某同學(xué)平時(shí)練習(xí)93 分分, 期中考試期中考試87分分, 期末考試期末考試95分分, 那么如何來評定該同學(xué)的那么如何來評定該同學(xué)的 學(xué)期總評成績呢學(xué)期總評

47、成績呢? 解解: 該同學(xué)的學(xué)期總評成績是該同學(xué)的學(xué)期總評成績是: 9330%=92(分分) +9540% 8730% +2. 加權(quán)平均數(shù)加權(quán)平均數(shù):小明同學(xué)在初二年級第一學(xué)期的數(shù)學(xué)成績?nèi)缦卤砀裥∶魍瑢W(xué)在初二年級第一學(xué)期的數(shù)學(xué)成績?nèi)缦卤砀? 請請按圖示的平時(shí)、期中、期末的權(quán)重按圖示的平時(shí)、期中、期末的權(quán)重, 計(jì)算小明同學(xué)的學(xué)期總計(jì)算小明同學(xué)的學(xué)期總評成績評成績. 考試考試 平時(shí)平時(shí)1 1 平時(shí)平時(shí)2 2 平時(shí)平時(shí)3 3 期中期中 期末期末成績成績89 89 78 78 85 85 90 90 87 87 問題:某市三個郊縣的人數(shù)及人均耕地面積如下表。問題:某市三個郊縣的人數(shù)及人均耕地面積如下表。

48、郊縣郊縣人數(shù)人數(shù)/萬萬人均耕地面積人均耕地面積/公頃公頃A150.15B70.21C100.18這個市郊縣人均耕地面積是多少(精確到這個市郊縣人均耕地面積是多少(精確到0.01公頃)公頃)你認(rèn)為小明的做法有道理嗎?為什么?你認(rèn)為小明的做法有道理嗎?為什么?小明求得這個市郊縣的人均耕地面積為小明求得這個市郊縣的人均耕地面積為:)(18.0318.021.015.0公頃xnxxx,21nfff21,若若n個數(shù)個數(shù)的權(quán)分別是的權(quán)分別是則:則:nnnxxxfffffff3212211 叫做這叫做這n個數(shù)的個數(shù)的加權(quán)平均數(shù)加權(quán)平均數(shù)。數(shù)據(jù)的權(quán)能夠反映的數(shù)據(jù)的相對數(shù)據(jù)的權(quán)能夠反映的數(shù)據(jù)的相對“重要程度重要

49、程度”。上面的平均數(shù)上面的平均數(shù)0.17稱為稱為3個數(shù)個數(shù)0.15、0.21、018的的加權(quán)平均數(shù)加權(quán)平均數(shù),三個郊縣的人數(shù)(單位是萬),三個郊縣的人數(shù)(單位是萬),15、7、10分別為三個數(shù)據(jù)分別為三個數(shù)據(jù)的的權(quán)權(quán))(17. 0107151018. 0721. 01515. 0公頃 算術(shù)平均數(shù)和加權(quán)平均數(shù)有算術(shù)平均數(shù)和加權(quán)平均數(shù)有什么聯(lián)系和區(qū)別?什么聯(lián)系和區(qū)別? 算術(shù)平均數(shù)是加權(quán)平均數(shù)的一算術(shù)平均數(shù)是加權(quán)平均數(shù)的一種特殊情況種特殊情況,即各項(xiàng)的權(quán)相等時(shí)即各項(xiàng)的權(quán)相等時(shí),加權(quán)平均數(shù)就是算術(shù)平均數(shù)加權(quán)平均數(shù)就是算術(shù)平均數(shù)。 公司的經(jīng)理說:公司的經(jīng)理說:“我公司員工收入很高,月平我公司員工收入很高

50、,月平均工資為均工資為2000元元”;公司的一位職員公司的一位職員D說:說:“我們好幾個人的工資都我們好幾個人的工資都是是1100元元”;公司的另一位職員公司的另一位職員C說:說:“我的工資是我的工資是1200元,元,在公司算中等收入在公司算中等收入”.那么請問這三人分別從哪個角度說的呢?你是那么請問這三人分別從哪個角度說的呢?你是怎樣看待該公司員工的收入呢?請小組交流、怎樣看待該公司員工的收入呢?請小組交流、討論討論.一般地,當(dāng)一般地,當(dāng)一組數(shù)據(jù)按大小順序一組數(shù)據(jù)按大小順序排列后,位于排列后,位于正中間的一個數(shù)據(jù)(當(dāng)數(shù)據(jù)的個數(shù)是奇數(shù)時(shí))正中間的一個數(shù)據(jù)(當(dāng)數(shù)據(jù)的個數(shù)是奇數(shù)時(shí))或正中間兩個數(shù)據(jù)

51、的平均數(shù)(當(dāng)數(shù)據(jù)的個數(shù)是或正中間兩個數(shù)據(jù)的平均數(shù)(當(dāng)數(shù)據(jù)的個數(shù)是偶數(shù)時(shí))叫做這組數(shù)據(jù)的偶數(shù)時(shí))叫做這組數(shù)據(jù)的中位數(shù)中位數(shù).一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的的眾數(shù)眾數(shù).因此,平均數(shù)、中位數(shù)和眾數(shù)從不同的側(cè)面給我們提因此,平均數(shù)、中位數(shù)和眾數(shù)從不同的側(cè)面給我們提供了一組數(shù)據(jù)的面貌,正因?yàn)槿绱?,我們把這三種數(shù)供了一組數(shù)據(jù)的面貌,正因?yàn)槿绱耍覀儼堰@三種數(shù)作為一組數(shù)據(jù)集中趨勢的代表作為一組數(shù)據(jù)集中趨勢的代表.一組數(shù)據(jù)的平均數(shù)和中位數(shù)是唯一的,眾數(shù)不唯一一組數(shù)據(jù)的平均數(shù)和中位數(shù)是唯一的,眾數(shù)不唯一上面例題中,為什么該公司員工收入的為什么該公司員工收入的平

52、均數(shù)比中位數(shù)、眾數(shù)高很多?請你分平均數(shù)比中位數(shù)、眾數(shù)高很多?請你分析一下原因析一下原因. 有人對展覽館七天中每天進(jìn)館參觀的人有人對展覽館七天中每天進(jìn)館參觀的人數(shù)做了記錄,情況如下:數(shù)做了記錄,情況如下: 180,176,176,173,176,181,182求這組數(shù)據(jù)的中位數(shù)和眾數(shù)求這組數(shù)據(jù)的中位數(shù)和眾數(shù).8、如下表是統(tǒng)計(jì)某一城市、如下表是統(tǒng)計(jì)某一城市7月份的每天的氣溫情況統(tǒng)月份的每天的氣溫情況統(tǒng)計(jì)表,求計(jì)表,求7月份的氣溫的眾數(shù)月份的氣溫的眾數(shù).氣氣溫溫21232427282930313233343536天天數(shù)數(shù)1112324344311126問題1:在調(diào)查一家工廠的月工資水平時(shí),這家工廠的

53、在調(diào)查一家工廠的月工資水平時(shí),這家工廠的月工資為月工資為2700元的廠長回答說:元的廠長回答說:“我廠月工資水平是我廠月工資水平是934元元”;代表該廠工人的工會負(fù)責(zé)人說:;代表該廠工人的工會負(fù)責(zé)人說:“月工資水月工資水平是平是800元元”;而稅務(wù)檢查人員說:月工資水平是;而稅務(wù)檢查人員說:月工資水平是850元。元。這三種不同的說法都是根據(jù)下面的數(shù)據(jù)表得出的:這三種不同的說法都是根據(jù)下面的數(shù)據(jù)表得出的:月 工月 工資資/元元2700200015001000900800700人數(shù)人數(shù)112318232 請問他們各自所說的月工資水平分別是指哪一種?(平請問他們各自所說的月工資水平分別是指哪一種?(

54、平均數(shù)、中位數(shù)還是眾數(shù)),哪個數(shù)據(jù)更具有代表性?均數(shù)、中位數(shù)還是眾數(shù)),哪個數(shù)據(jù)更具有代表性?問題問題2:某商場在一個月內(nèi)銷售某中品牌的冰箱:某商場在一個月內(nèi)銷售某中品牌的冰箱共共58臺,具體情況如下:臺,具體情況如下:型號型號200升升215升升185升升176升升銷售數(shù)量銷售數(shù)量6臺臺38臺臺14臺臺8臺臺請問此商場的經(jīng)理關(guān)注的是這組數(shù)據(jù)的平均數(shù)請問此商場的經(jīng)理關(guān)注的是這組數(shù)據(jù)的平均數(shù)嗎?他關(guān)注的是什么?為什么?如果你是經(jīng)理,嗎?他關(guān)注的是什么?為什么?如果你是經(jīng)理,你將如何調(diào)整這種冰箱的進(jìn)貨數(shù)量呢?你將如何調(diào)整這種冰箱的進(jìn)貨數(shù)量呢? 1、計(jì)算平均數(shù)的時(shí)候,所有的數(shù)據(jù)都參加運(yùn)、計(jì)算平均數(shù)的

55、時(shí)候,所有的數(shù)據(jù)都參加運(yùn)算,它能成分利用數(shù)據(jù)所提供的信息,在現(xiàn)實(shí)算,它能成分利用數(shù)據(jù)所提供的信息,在現(xiàn)實(shí)生活中較為常用;但它容易受到極端值的影響生活中較為常用;但它容易受到極端值的影響. 2、中位數(shù)的優(yōu)點(diǎn)計(jì)算簡單,受極端值的影響、中位數(shù)的優(yōu)點(diǎn)計(jì)算簡單,受極端值的影響較小,但不能充分利用所有數(shù)據(jù)的信息較小,但不能充分利用所有數(shù)據(jù)的信息. 3、一組數(shù)據(jù)中某些數(shù)據(jù)多次重復(fù)出現(xiàn)時(shí),眾、一組數(shù)據(jù)中某些數(shù)據(jù)多次重復(fù)出現(xiàn)時(shí),眾數(shù)往往是人們尤為關(guān)心的一個量,但各個數(shù)據(jù)數(shù)往往是人們尤為關(guān)心的一個量,但各個數(shù)據(jù)的重復(fù)次數(shù)大致相等時(shí),眾數(shù)往往沒有特別意的重復(fù)次數(shù)大致相等時(shí),眾數(shù)往往沒有特別意義義.數(shù)據(jù)的數(shù)據(jù)的離散程

56、度離散程度 為了提高農(nóng)副產(chǎn)品的國際競爭力,一些行業(yè)協(xié)會為了提高農(nóng)副產(chǎn)品的國際競爭力,一些行業(yè)協(xié)會對農(nóng)副產(chǎn)品的規(guī)格進(jìn)行了劃分,某外貿(mào)公司要出口對農(nóng)副產(chǎn)品的規(guī)格進(jìn)行了劃分,某外貿(mào)公司要出口一批規(guī)格為一批規(guī)格為75g75g的雞腿現(xiàn)有的雞腿現(xiàn)有2 2個廠家提供貨源,它個廠家提供貨源,它們的價(jià)格相同,雞腿的品質(zhì)也相近質(zhì)檢員分別從們的價(jià)格相同,雞腿的品質(zhì)也相近質(zhì)檢員分別從甲、乙兩廠的產(chǎn)品中抽樣調(diào)查了甲、乙兩廠的產(chǎn)品中抽樣調(diào)查了2020只雞腿,它們的只雞腿,它們的質(zhì)量質(zhì)量( (單位單位:g):g)如下:如下:甲廠:甲廠:75 74 74 76 73 76 75 77 77 7475 74 74 76 73

57、76 75 77 77 74 74 75 75 76 73 76 73 78 77 72 74 75 75 76 73 76 73 78 77 72乙廠:乙廠:75 78 72 77 74 75 73 79 72 75 75 78 72 77 74 75 73 79 72 75 80 71 76 77 73 78 71 76 73 75 80 71 76 77 73 78 71 76 73 75 把這些數(shù)據(jù)表示成下圖:把這些數(shù)據(jù)表示成下圖: 707274767880707274767880質(zhì)量/g質(zhì)量/g甲廠乙廠707274767880707274767880質(zhì)量/g質(zhì)量/g甲廠乙廠 7072

58、74767880質(zhì)量/g222212.1xxxxxxnsn707274767880質(zhì)量/g甲廠丙廠707274767880質(zhì)量/g;39. 45 . 222乙甲,ss 151719212325159131721時(shí)刻氣溫/151719212325159131721時(shí)刻氣溫/ 2222121()()() nsxxxxxxn222121()()() nsxxxxxxn(1)(1)方差方差( (標(biāo)準(zhǔn)差標(biāo)準(zhǔn)差) )用來衡量一批數(shù)據(jù)的用來衡量一批數(shù)據(jù)的離散程度離散程度. .(2)(2)方差方差( (標(biāo)準(zhǔn)差標(biāo)準(zhǔn)差) )越小越小, ,波動越小波動越小, ,越穩(wěn)定越穩(wěn)定. . 方差方差( (標(biāo)準(zhǔn)差標(biāo)準(zhǔn)差) )越

59、大越大, ,波動越大波動越大, ,越不穩(wěn)定越不穩(wěn)定. .2222121()()() nsxxxxxxn2222121()()() nsxxxxxxn222121()()() nsxxxxxxn課堂總結(jié)課堂總結(jié)方差方差( (標(biāo)準(zhǔn)差標(biāo)準(zhǔn)差) )越小越小, ,波動越小波動越小, ,越穩(wěn)定越穩(wěn)定. .方差方差( (標(biāo)準(zhǔn)差標(biāo)準(zhǔn)差) )越大越大, ,波動越大波動越大, ,越不穩(wěn)定越不穩(wěn)定. .1.1.平均數(shù)平均數(shù): :反映數(shù)據(jù)的平均水平反映數(shù)據(jù)的平均水平; ;2.2.中位數(shù)中位數(shù): :數(shù)據(jù)從小到大排列后數(shù)據(jù)從小到大排列后, ,處于中間處于中間 位置的數(shù)或中間兩數(shù)的平均數(shù)位置的數(shù)或中間兩數(shù)的平均數(shù); ;3.

60、3.眾眾 數(shù)數(shù): :出現(xiàn)次數(shù)最多的數(shù)出現(xiàn)次數(shù)最多的數(shù); ;4.4.極極 差差: :反映數(shù)據(jù)變化范圍的大小反映數(shù)據(jù)變化范圍的大小, ,易受易受 極端值影響極端值影響; ;5.5.方方 差差: :反映數(shù)據(jù)波動的大小反映數(shù)據(jù)波動的大小; ;6.6.標(biāo)準(zhǔn)差標(biāo)準(zhǔn)差: :反映數(shù)據(jù)波動的大小反映數(shù)據(jù)波動的大小, ,且與數(shù)據(jù)且與數(shù)據(jù) 單位一致單位一致. .數(shù)據(jù)的分析指標(biāo)數(shù)據(jù)的分析指標(biāo)集中趨勢集中趨勢離散程度離散程度第四章第四章 等可能條件下的概率等可能條件下的概率復(fù)習(xí)復(fù)習(xí): 等可能事件的定義是什么?等可能事件的定義是什么?對于有些隨機(jī)試驗(yàn)來說,每次試驗(yàn)只可能出現(xiàn)有限個對于有些隨機(jī)試驗(yàn)來說,每次試驗(yàn)只可能出現(xiàn)有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論