![超分子測試方法總結(jié)_第1頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/18/0fbfdb70-7959-48c7-9dae-522e989980c4/0fbfdb70-7959-48c7-9dae-522e989980c41.gif)
![超分子測試方法總結(jié)_第2頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/18/0fbfdb70-7959-48c7-9dae-522e989980c4/0fbfdb70-7959-48c7-9dae-522e989980c42.gif)
![超分子測試方法總結(jié)_第3頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/18/0fbfdb70-7959-48c7-9dae-522e989980c4/0fbfdb70-7959-48c7-9dae-522e989980c43.gif)
![超分子測試方法總結(jié)_第4頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/18/0fbfdb70-7959-48c7-9dae-522e989980c4/0fbfdb70-7959-48c7-9dae-522e989980c44.gif)
![超分子測試方法總結(jié)_第5頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/18/0fbfdb70-7959-48c7-9dae-522e989980c4/0fbfdb70-7959-48c7-9dae-522e989980c45.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、 總 結(jié)超分子材料分析測試方法現(xiàn)代儀器分析方法組成分析結(jié)構(gòu)分析無機元素分析有機元素分析晶體材料分析有機材料分析 AAS ICP有機有機元素分析儀元素分析儀(CHNOS) XRD SCD 四大光譜四大光譜現(xiàn)代儀器分析方法形貌分析SEMTEMAFM 冷場SEM W燈絲、LaB6 SEMHRTEMSTEMFE-SEM 熱場SEMTEM選取電子衍射像(選取電子衍射像(SAEDSAED)高分辨像(晶格條文)高分辨像(晶格條文)形貌像(低倍,高倍)形貌像(低倍,高倍)EDSEDS二次電子像(低倍,高倍)二次電子像(低倍,高倍)背散射電子像(相貌、組成分析)背散射電子像(相貌、組成分析)EDSEDS(譜、點
2、掃、線掃及面掃)(譜、點掃、線掃及面掃)納米粒子成像納米粒子成像表面平整表面平整不需噴金不需噴金與XPS區(qū)別?X X射線光電子能譜射線光電子能譜( XPSXPS ,全稱為,全稱為X-ray Photoelectron Spectroscopy)定義:是一種基于光電效應(yīng)的電子能譜,它是利用X射線光子激發(fā)出物質(zhì)表面原子的內(nèi)層電子,通過對這些電子進行能量分析而獲得的一種能譜。XPS的最大特色:在于能獲取豐富的化學信息,對樣品表面的損傷最輕微,表面的最基本XPS分析可提供表面存在的所有元素(除H和He外)的定性和定量信息。正是由于XPS含有化學信息,它也通常被稱為化學分析電子能譜 ( ESCA,全稱為
3、Electron Spectroscopy for Chemical Analysis),XPS的更高級應(yīng)用可得到關(guān)于表面的化學組成和形成的更詳細的信息。XPS,EDS有哪些區(qū)別呢?項目EDSXPS入射源電子源X射線原理能量散射X射線譜是電子束和樣品作用,原子的電子發(fā)生躍遷,有能量差作為特征X射線放出。X光電子能譜是通過X射線的光子攜帶的能量給原子的電子能量電離,原子成為離子狀態(tài)。深度100nm5nm左右 表面分析內(nèi)容元素組成元素組成 價態(tài)變化范圍探測Z大于5的元素探測Z大于5的元素 分析除氫和氦以外的元素 Ag/ZnO heterostructure nanocatalysts with A
4、g content of 1 wt % are successfully prepared through three different simple methods, where chemical reduction and photolysis reaction are adopted to fabricate the heterostructure. The dispersity of Ag clusters and/or nanoparticles in Ag/ZnO nanocatalyst is investigated by EDX mapping and XPS techni
5、ques. The experimental results show that deposition-precipitation is an efficient method to synthesize Ag/ZnO nanocatalyst with highly dispersed Ag clusters and/or nanoparticles; the photocatalytic activity of Ag/ZnO photocatalysts mainly depends on the dispersity of metallic Ag in Ag/ZnO nanocataly
6、st; the higher the dispersity of metallic Ag in Ag/ZnO nanocatalyst is, the higher the photocatalytic activity of Ag/ZnO photocatalyst should be. Photocatalytic Activity of Ag/ZnO Heterostructure Nanocatalyst: Correlation between Structure and PropertyPhotocatalytic Activity of Ag/ZnO Heterostructur
7、e Nanocatalyst: Correlation between Structure and PropertyFigure 2. Low-magnification SEM images and EDX mapping of the as-synthesized samples: (a) Ag/ZnO-DP, (b) Ag/ZnO-CP and (c) Ag/ZnOST; (d) EDXS spectra recorded from the corresponding rectangular region of the as-synthesized samples in a-c. The
8、 coverage of blue color in a-c reflects Ag distributions in the as-synthesized samples, and the inset in a and c is the corresponding HRTEM image of a single Ag/ZnO heterostructure nanocrystal373.2 eV367.2 eVbulk Ag Ag 3d5/2, 368.3 eVAg 3d3/2, 374.3 eVAg ZnOeThe shift of the binding energy of metall
9、ic Ag indicates that there is a strong interaction between metallic Ag and ZnO nanocrystalsAccording to the EDX mapping and XPS results, this phenomenon should be attributed to the highest dispersity of metallic Ag on the surface of ZnO nanocrystals for Ag/ZnO-DP sample.Figure 3. Ag 3d XPS spectra o
10、f the as-synthesized samples: (a) Ag/ZnO-DP, (b) Ag/ZnO-CP, and (c) Ag/ZnO-ST.Figure 4. (a) UV-vis diffuse-reflectance and (b) PL spectra of theas-synthesized Ag/ZnO heterostructure nanocrystals.The appearance of two kinds of characteristic absorption bandsalso confirms that the as-synthesized sampl
11、es are composed ofzerovalent Ag and ZnO.Figure 5. Photodegradation of MO by the as-synthesized samples:(a) Ag/ZnO-DP, (b) Ag/ZnO-CP, and (c) Ag/ZnO-ST. The inset is thephotograph of the as-synthesized samples dispersed in MO solution(the concentration of the catalysts is 1.25 mg/mL).TEM and HRTEM im
12、ages for the grown ZnO nano-needle.FE-SEM images for the nanostructures grown on silicon substrate. ZnO grown for: (a) 30 min, (b) 60 min, (c) 180 min, and (d) ZnO nano-needles after annealing for 180 min at 500 C only under N2 atmosphere.Characterization of ZnO needle-shaped nanostructures grownon
13、NiO catalyst-coated Si substratesTEM image of an Al2O3-deposited ZnO nanorod. The central part (A) is the ZnO nanorod and the outer part (B) is the deposited Al2O3 layer.HRTEM image of an Al2O3-deposited ZnO nanorod.Al2O3 coating of ZnO nanorods by atomic layer depositionHRTEM image of a nanowire. T
14、he left part presents interplanar separation of 0.52 nm and consists of a single ZnO crystal. The crystal growth direction 001 is perpendicular to the planes. The small inclusions on the right consist of Er2O3 nanocrystals. The interplanar separation of 0.30 nm corresponds to the 222 direction.SAED
15、pattern obtained at the surface of a nanowire. The rectangular pattern is due to the 210 direction in ZnO.The rings are due to different orientations of Er2O3 nanocrystStructural characterization of ZnO/Er2O3 core/shell nanowiresControlled Growth and Characterization of Tungsten Oxide Nanowires Usin
16、g Thermal Evaporation of WO3 PowderSEM images of WO3 nanowires grown on tungsten substrate: (a, b) top views, (c) tilt view, and (d) EDX spectrum of the nanowire sampleFigure 3. (a) HRTEM image of WO3 nanowire. Insets (b, c) areenlargement HRTEMs from squares in (a). (d) Diffraction pattern oftungst
17、en oxide nanowires.It shows a single nanowire with a diameter of 70 nm that exhibitsa well-defined lattice fringe separation with 0.38 nm correspondingto 001 planes of a monoclinic WO3 crystal (JCPDS Card No. 75-2072).Figure 4. XRD profile of WO3 nanowires.The main peaks can be well indexed to be a
18、monoclinic WO3 phase (JCPDS Card No. 75-2072; a ) 7.274, b ) 7.501, c ) 3.824, and ) 89.930; space group P21/a), which is in good agreement with our TEM and SAEDanalysis.Figure 5. XPS profiles of WO3 nanowires. (a)W4f peaks: the doublet 4f7/2 and 4f5/2, at binding energies of 35.5 and 37.5 eV, respe
19、ctively, and the two fitted doublets representing the different oxidation states of W (green line, W6+; blue line, W5+) for specimen grown at 1000C. (b) O 1s peaks: a peak at 530.5 eV corresponding to the valence of the tungsten equal to +6 and the other peak at 532.2 eV corresponding to residual wa
20、ter bound in the nanowire structure or adsorbed on the surface.Figure 6. Evolution of W 4f spectra for thermal annealed WO3nanowires in the temperature range of 900-1100 C in a vacuum.The effects of the growth temperature on the oxidation states of the tungsten oxide nanowires were studied by XPS. T
21、he shape of the W 4f peaks changes at different temperatures (Figure 6). The W 4f peak of samples annealed at 1000-1100 C shows a stoichiometric feature of WO3. However, for samples annealed at 900 C, the peak becomes broader and a shoulder forms at the higher binding energy side. This shoulder corr
22、esponds to lower oxidation state of 2 in the x of WOx structure. These results indicate that, at high growth temperatures, WO2 readily transforms into WO3.Figure 7. Raman spectrum of as-synthesized products.Raman measurements were performed since this technique is well-known to give the “fingerprint” of the WO3 chemical structure. It was found that the phonon activity may be grouped in a set of two ranges: high in the 600-900 cm-1region and low in the 200-400 cm-1 region (Figure 7). The four peaks obtained in the Raman spectrum of the WO3 nanowi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 關(guān)于貨款結(jié)算合同范例
- 公司私募 合同范本
- 鳳崗生鮮配送合同范例
- 養(yǎng)殖土地合作合同范本
- pvc水管質(zhì)保合同范例
- 中藥材基地轉(zhuǎn)讓合同范本
- 個人培訓學徒合同范例
- wps復制合同范例
- 上海水電燃氣交房合同范本
- 三方投資協(xié)議合同范例
- 商務(wù)星球版地理八年級下冊全冊教案
- 天津市河西區(qū)2024-2025學年四年級(上)期末語文試卷(含答案)
- 北京市北京四中2025屆高三第四次模擬考試英語試卷含解析
- 2024年快遞行業(yè)無人機物流運輸合同范本及法規(guī)遵循3篇
- 地下商業(yè)街的規(guī)劃設(shè)計
- 傷殘撫恤管理辦法實施細則
- 中國慢性冠脈綜合征患者診斷及管理指南2024版解讀
- 提升模組良率-六西格瑪
- DL-T+5196-2016火力發(fā)電廠石灰石-石膏濕法煙氣脫硫系統(tǒng)設(shè)計規(guī)程
- 2024-2030年中國產(chǎn)教融合行業(yè)市場運營態(tài)勢及發(fā)展前景研判報告
- 2024年微生物檢測試劑行業(yè)商業(yè)計劃書
評論
0/150
提交評論