版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、.公式P是指排列,從N個元素取R個進(jìn)行排列。公式C是指組合,從N個元素取R個,不進(jìn)行排列。N-元素的總個數(shù) R參與選擇的元素個數(shù) !-階乘 ,如 9!9*8*7*6*5*4*3*2*1從N倒數(shù)r個,表達(dá)式應(yīng)該為n*(n-1)*(n-2).(n-r+1); 因為從n到(n-r+1)個數(shù)為n(n-r+1)r舉例:Q1: 有從1到9
2、共計9個號碼球,請問,可以組成多少個三位數(shù)?A1: 123和213是兩個不同的排列數(shù)。即對排列順序有要求的,既屬于“排列P”計算范疇。 上問題中,任何一個號碼只能用一次,顯然不會出現(xiàn)988,997之類的組合, 我們可以這么看,百位數(shù)有9種可能,十位數(shù)則應(yīng)該有9-1種可能,個位數(shù)則應(yīng)該只有9-1-1種可能,最終共有9*8*7個三位數(shù)。計算公式P(3,9)9*8*7,(從9倒數(shù)3個的乘積)Q2: 有從1到9共計9個號碼球,請問,如果三個一組,代
3、表“三國聯(lián)盟”,可以組合成多少個“三國聯(lián)盟”?A2: 213組合和312組合,代表同一個組合,只要有三個號碼球在一起即可。即不要求順序的,屬于“組合C”計算范疇。 上問題中,將所有的包括排列數(shù)的個數(shù)去除掉屬于重復(fù)的個數(shù)即為最終組合數(shù)C(3,9)=9*8*7/3*2*1排列、組合的概念和公式典型例題分析 例1 設(shè)有3名學(xué)生和4個課外小組(1)每名學(xué)生都只參加一個課外小組;(2)每名學(xué)生都只參加一個課外小組,而且每個小組至多有一名學(xué)生參加各有多少種不同方法?
4、0; 解(1)由于每名學(xué)生都可以參加4個課外小組中的任何一個,而不限制每個課外小組的人數(shù),因此共有 種不同方法 (2)由于每名學(xué)生都只參加一個課外小組,而且每個小組至多有一名學(xué)生參加,因此共有 種不同方法 點評 由于要讓3名學(xué)生逐個選擇課外小組,故兩問都用乘法原理進(jìn)行計算 例2 排成一行,其中 不排第一, 不排第二, 不排第三, 不排第四的不同排法共有多少種? 解 依題意,符合要求的排法可分為第一個排 、 、 中的
5、某一個,共3類,每一類中不同排法可采用畫“樹圖”的方式逐一排出: 符合題意的不同排法共有9種 點評 按照分“類”的思路,本題應(yīng)用了加法原理為把握不同排法的規(guī)律,“樹圖”是一種具有直觀形象的有效做法,也是解決計數(shù)問題的一種數(shù)學(xué)模型 例判斷下列問題是排列問題還是組合問題?并計算出結(jié)果 (1)高三年級學(xué)生會有11人:每兩人互通一封信,共通了多少封信?每兩人互握了一次手,共握了多少次手? (2)高二年級數(shù)學(xué)課外小組共10人:從中選一名正組長和一名副組長,共有多少種不同的選法?從中選2名參加省數(shù)學(xué)競賽,有多少種不同的選法? (3)有2,3,5,7,11,13,17,19八個質(zhì)數(shù):
6、從中任取兩個數(shù)求它們的商可以有多少種不同的商?從中任取兩個求它的積,可以得到多少個不同的積? (4)有8盆花:從中選出2盆分別給甲乙兩人每人一盆,有多少種不同的選法?從中選出2盆放在教室有多少種不同的選法? 分析(1)由于每人互通一封信,甲給乙的信與乙給甲的信是不同的兩封信,所以與順序有關(guān)是排列;由于每兩人互握一次手,甲與乙握手,乙與甲握手是同一次握手,與順序無關(guān),所以是組合問題其他類似分析 (1)是排列問題,共用了 封信;是組合問題,共需握手 (次) (2)是排列問題,共有 (種)不同的選法;是組合問題,共有 種不同的選法 (3)是排列問題,共有 種不同的商;是組合問題,共有 種不同的積 (
7、4)是排列問題,共有 種不同的選法;是組合問題,共有 種不同的選法 例證明 證明 左式 右式 等式成立 點評這是一個排列數(shù)等式的證明問題,選用階乘之商的形式,并利用階乘的性質(zhì) ,可使變形過程得以簡化 例5化簡 解法一原式 解法二原式 點評 解法一選用了組合數(shù)公式的階乘形式,并利用階乘的性質(zhì);解法二選用了組合數(shù)的兩個性質(zhì),都使變形過程得以簡化 例6解方程:(1) ;(2) 解 (1)原方程 解得 (2)原方程可變?yōu)?, , 原方程可化為 即 ,解得 第六章 排列組合、二項式定理 一、考綱要求 1.掌握加法原理及乘法原理,并能用這兩個原理分析解決一些簡
8、單的問題.2.理解排列、組合的意義,掌握排列數(shù)、組合數(shù)的計算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的問題.3.掌握二項式定理和二項式系數(shù)的性質(zhì),并能用它們計算和論證一些簡單問題.二、知識結(jié)構(gòu)三、知識點、能力點提示 (一)加法原理乘法原理說明 加法原理、乘法原理是學(xué)習(xí)排列組合的基礎(chǔ),掌握此兩原理為處理排 列、組合中有關(guān)問題提供了理論根據(jù).例1 5位高中畢業(yè)生,準(zhǔn)備報考3所高等院校,每人報且只報一所,不同的報名方法共有多少種?解: 5個學(xué)生中每人都可以在3所高等院校中任選一所報名,因而每個學(xué)生都有3種不同的 報名方法,根據(jù)乘法原
9、理,得到不同報名方法總共有3×3×3×3×3=35(種)(二)排列、排列數(shù)公式說明 排列、排列數(shù)公式及解排列的應(yīng)用題,在中學(xué)代數(shù)中較為獨特,它研 究的對象以及研 究問題的方法都和前面掌握的知識不同,內(nèi)容抽象,解題方法比較靈活,歷屆高考主要考查排列的應(yīng)用題,都是選擇題或填空題考查.例2 由數(shù)字1、2、3、4、5組成沒有重復(fù)數(shù)字的五位數(shù),其中小于50 000的 偶數(shù)共有( )A.60個 B.48個 C.36個 D.24個解 因為要求是偶數(shù),個位數(shù)只能是2或4的排法有P12;小于50 000的五位數(shù),萬位只能是1、3或2、4中剩下的一個的排法有P13;在首末兩位數(shù)排定后,中間3個位數(shù)的排法有P33,得P13P33P1236(個)由此可知此題應(yīng)選C.例3 將數(shù)字1、2、3、4填入標(biāo)號為1、2、3、4的四個方格里,每
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度文化產(chǎn)業(yè)園區(qū)運營管理合同(模板)3篇
- 劇院舞臺地面鋪設(shè)合同
- 私人會所大理石裝修合同
- 水上賽艇魚塘租賃協(xié)議
- 酒店協(xié)管員管理辦法
- 生態(tài)農(nóng)業(yè)灰土施工合同
- 門店租賃合同附裝修項目清單
- 社區(qū)活動音響租賃合同
- 住宅小區(qū)綠化施工合同轉(zhuǎn)讓協(xié)議
- 設(shè)備轉(zhuǎn)讓協(xié)議書簽訂配供應(yīng)
- 醫(yī)院感染科護(hù)士的手術(shù)室感染控制培訓(xùn)
- 大棚項目施工安全措施計劃方案
- 高中語文評價體系的構(gòu)建與實施
- 安徽省合肥市蜀山區(qū)2023-2024學(xué)年七年級上學(xué)期期末生物試卷
- 變電站消防培訓(xùn)課件
- TSM0500G(阻燃性) 豐田試驗測試標(biāo)準(zhǔn)
- 疊合板施工工藝及質(zhì)量控制要點
- 公共衛(wèi)生事業(yè)管理專業(yè)職業(yè)生涯規(guī)劃書
- 花藝師年度工作總結(jié)
- 新目標(biāo)漢語口語課本2課件-第2單元
- 二手車買賣合同(標(biāo)準(zhǔn)版范本)
評論
0/150
提交評論