電荷的運(yùn)動與電流的聯(lián)系_第1頁
電荷的運(yùn)動與電流的聯(lián)系_第2頁
電荷的運(yùn)動與電流的聯(lián)系_第3頁
電荷的運(yùn)動與電流的聯(lián)系_第4頁
電荷的運(yùn)動與電流的聯(lián)系_第5頁
已閱讀5頁,還剩31頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、 量子三維常數(shù)理論 電荷的運(yùn)動與電流的聯(lián)系 胡良,深圳市宏源清實(shí)業(yè)有限公司胡唐錦,深圳大學(xué), 摘要:電場強(qiáng)度的方向:規(guī)定為放在該點(diǎn)的正電荷受到的靜電力方向。也就是說,與正電荷受力方向相同,與負(fù)電荷受力方向相反。電場強(qiáng)度的物理學(xué)內(nèi)涵,描述電場強(qiáng)弱的物理量,描述電場的力的性質(zhì)的物理量。電場強(qiáng)度的大小取決與電場本身(或者說取決于激發(fā)電場的電荷),而與電場中的受力電荷無關(guān)。質(zhì)量場強(qiáng)度的物理學(xué)內(nèi)涵,描述質(zhì)量場強(qiáng)弱的物理量,描述萬有引力的性質(zhì)的物理量。質(zhì)量場強(qiáng)度的大小取決與質(zhì)量場本身(或者說取決于激發(fā)質(zhì)量場的質(zhì)量荷),而與質(zhì)量場中的受力質(zhì)點(diǎn)無關(guān)。底層理論的常數(shù)可推出另一個(gè)理論中的常數(shù)。例如,光速可用真空介

2、電常數(shù)及磁導(dǎo)率求出。而根據(jù)狄拉克的大數(shù)假說,萬有引力常數(shù)與宇宙的年齡成反比,這意味著隨著宇宙的演化,萬有引力常數(shù)會變得越來越小。這意味著,萬有引力常數(shù)會隨著時(shí)間的推移而發(fā)生變化。顯然,萬有引力常數(shù)并不一定是物理學(xué)常數(shù);萬有引力常數(shù)是某些變量的函數(shù)。關(guān)鍵詞:電場強(qiáng)度,電荷,質(zhì)量場強(qiáng)度,質(zhì)量荷,萬有引力常數(shù),測量,溫度,壓強(qiáng),拉格朗日量,哈密頓量,動能,勢能,狄拉克方程,相對論,量子力學(xué),粒子,不確定原理,全同粒子,動量,位置,光子,輻射場,量子化,量子相干態(tài),朗之萬方程,電子,質(zhì)子,中子,協(xié)變性,洛倫茲變換,量綱,哈密頓量,拉格朗日量,質(zhì)心系,質(zhì)點(diǎn),質(zhì)量,萬有引力,質(zhì)量場,作用力,反作用力,杠桿

3、平衡,背景空間,光子作者:總工,高工,碩士,副董事長 HYPERLINK mailto:,2320051422 ,23200514220引言底層理論的常數(shù)可推出另一個(gè)理論中的常數(shù)。例如,光速可用真空介電常數(shù)及磁導(dǎo)率求出。而根據(jù)狄拉克的大數(shù)假說,萬有引力常數(shù)與宇宙的年齡成反比,這意味著隨著宇宙的演化,萬有引力常數(shù)會變得越來越小。這意味著,萬有引力常數(shù)會隨著時(shí)間的推移而發(fā)生變化。顯然,萬有引力常數(shù)并不一定是物理學(xué)常數(shù);萬有引力常數(shù)是某些變量的函數(shù)。熱力學(xué)溫度(根據(jù)熱力學(xué)原理得到的溫度),可用開爾文溫標(biāo)(絕對溫標(biāo),開氏溫標(biāo))表達(dá);體現(xiàn)了客觀世界的真實(shí)溫度。熱力學(xué)溫度(絕對溫度,T)是熱力學(xué)及統(tǒng)計(jì)物理

4、中的重要參數(shù)之一。狄拉克方程表達(dá)自旋-粒子的波函數(shù)方程,同時(shí)遵守相對論及量子力學(xué)原理;本質(zhì)上是,薛定諤方程的洛倫茲協(xié)變式;可預(yù)言正電子的存在。粒子具有內(nèi)稟屬性,由于宇宙是無窮大的,導(dǎo)致粒子的背景空間總是處于變化之中;背景空間對粒子的影響,體現(xiàn)了不確定原理(粒子與背景空間相互影響的結(jié)果)。粒子空間概率分布越集中,則其位置越確定;在該粒子所處的位置,重復(fù)去測量相同空間概率分布的全同粒子的動量,可發(fā)現(xiàn)其動量值每次都會有較大區(qū)別(動量值體現(xiàn)出分散的概率分布)。粒子概率波包越集中,粒子位置越確定;同時(shí),其動量值的概率波包越分散。動量值的概率波包越集中,動量值越確定;同時(shí),而粒子位置的概率波包越分散。這意

5、味著,空間位置分布概率波包與動量值分布的概率波包之間具有傅里葉變換關(guān)系,而與測量精度并無關(guān)系。同時(shí)在同一位置測得粒子的位置及動量;但在該同一位置重復(fù)統(tǒng)計(jì)測量該粒子(其全同粒子)動量時(shí),其動量值不是唯一不變的本征值(而是一個(gè)動量值的概率分布),體現(xiàn)為粒子在相同情況下,其動量具有不確定性。閔氏空間的矢量是滿足洛倫茲變換下的不變性的,顯然,E(2)=(PC)(2)+m0C2(2),或,E(2)(PC)(2)=m0C2(2),E ,表達(dá)總能量,量綱,*L(2)T(-2);m0C(2),表達(dá)靜止的能量,量綱,*L(2)T(-2);P,動量,量綱,*L(1)T(-1)L(1)T(-1)。這意味著,能量,動

6、量及質(zhì)量具有內(nèi)在的聯(lián)系;能量的表達(dá)形式可相互轉(zhuǎn)換。例如一,物體保持靜止,則有,E(2)=m0C2(2), 或,E=m0C2;換句話說,物體的能量體現(xiàn)為靜止能量,可表達(dá)為:E=m0C(2),或,E=m0C(2)。例如二,物體沒有靜止質(zhì)量,則有,E(2)=(PC)(2),或,E=PC。換句話說,物體的能量體現(xiàn)為運(yùn)動能量,可表達(dá)為:E=+PC,或,E=PC。顯然,能量也能夠是負(fù)的。根據(jù)量子三維常數(shù)理論,對于電子來說,可表達(dá)為:(Vpfp)C2=(Vpfp)Cx(2)+Cy(2)=(Vpfp)Cx(2)+(Vpfp)Cy(2)=(Vpfp)CxCx+(Vpfp)Cy(2) =PxCx+(Vpfp)Cy

7、(2) =PxCx+Ey=(Vpfp)Cx(Cx/C)C+(Vpfp)Cy(2)/C2C2 =PpxC+me0C2 =PpxC+me0C2/;顯然,(Vpfp)C2=PpxC+ime0C2。狄拉克方程表達(dá)自旋-粒子的波函數(shù)方程,同時(shí)遵守相對論及量子力學(xué)原理;本質(zhì)上是,薛定諤方程的洛倫茲協(xié)變式。可預(yù)言正電子的存在。狄拉克方程,i()t= Ci ()x+meC2,其中,普朗克常數(shù),量綱,*L(2)T(-2);,電子波函數(shù),量綱,1/*L(3)T(-3)L(0)T(1)L(1)T(-1)L(1)T(0);,系數(shù),量綱,L(0)T(0);me,電子質(zhì)量,量綱,。量子光學(xué)主要研究,輻射場及其量子化,量子

8、相干態(tài)及壓縮態(tài),光場與原子相互作用,光與物質(zhì)相互作用,光場相干性及干涉,朗之萬方程,光學(xué)諧振腔系統(tǒng),及光力耦合系統(tǒng)等。所謂相干光就是兩束光疊加后形成的光。由于,光子具有頻率及偏振方向(振動方向);因此,討論相干光時(shí),要保證兩束光的頻率及振動方向都相同。對于干涉問題來說,主要考慮兩束光的相位差。基本粒子是構(gòu)成物質(zhì)的最?。ㄗ罨荆┑膯卧?。也是在不改變物質(zhì)屬性的前提下,最小體積的物質(zhì)?;玖W影?,光子,電子,質(zhì)子及中子等。根據(jù)作用力的不同,粒子分為光子,輕子及強(qiáng)子等。協(xié)變性是指在不同慣性參考系下,物理規(guī)律仍保持相同的數(shù)學(xué)表達(dá)式。在慣性系中,物理規(guī)律符合洛倫茲變換;這意味著,讓物理方程中的長度,時(shí)間

9、及質(zhì)量等依據(jù)洛倫茲變換的規(guī)律改變,從而使得方程依然成立。從另一個(gè)角度來來說,同樣屬性的物理學(xué)量,其量綱必須完全相同。哈密頓量是所有粒子的動能的總和,再加上與系統(tǒng)相關(guān)的粒子的勢能。哈密頓量是所有 對于不同的背景空間(或不同數(shù)量的粒子),其哈密頓量是不相同的;因?yàn)?,哈密頓量包括粒子的動能之和以及相對于背景空間的勢能函數(shù)。哈密頓量屬于經(jīng)典力學(xué)中的概念;在量子力學(xué)中,經(jīng)典力學(xué)的物理量變?yōu)橄鄳?yīng)的算符;哈密頓量對應(yīng)的就是哈密頓算符。而拉格朗日量可揭示孤立量子體系的內(nèi)稟屬性;拉格朗日量方法屬于微擾理論。顯然,哈密頓量(與背景空間有關(guān))與拉格朗日量(與內(nèi)稟屬性有關(guān))的內(nèi)涵有所不同。The Hamiltonia

10、n is the sum of the kinetic energies of all particles, plus the potential energies of the particles associated with the system. Hamiltonian is all for different background space (or different number of particles), its Hamiltonian is not the same; because, Hamiltonian includes the sum of the kinetic

11、energy of particles and the potential energy function relative to the background space. The Hamiltonian is a concept in classical mechanics; in quantum mechanics, the physical quantity of classical mechanics becomes the corresponding operator; the Hamiltonian corresponds to the Hamiltonian operator.

12、The Lagrangian can reveal the intrinsic properties of the isolated quantum system; the Lagrangian method belongs to the perturbation theory. Obviously, Hamiltonian (related to background space) and Lagrangian (related to intrinsic properties) have different connotations.宇宙中的天體之間的運(yùn)動總是圍繞一個(gè)共同的質(zhì)心進(jìn)行運(yùn)動。由于

13、,質(zhì)量大的物體與共同質(zhì)心的距離總是更近;因此,質(zhì)量大的物體總是處于質(zhì)心系的中心。由于整個(gè)宇宙都在不停地旋轉(zhuǎn)當(dāng)中,因此,宇宙具有核式結(jié)構(gòu)。萬有引力就是一種將地球及太陽,太陽及銀河系等聯(lián)結(jié)在一起的力。萬有引力非常強(qiáng)大,可使質(zhì)量聚在一起;而且,引力也能讓時(shí)空彎曲。牛頓定律可用于來做許多的事情;例如,計(jì)算在什么地方發(fā)射火箭才能將探測器送到預(yù)定的位置等。愛因斯坦的相對論,可用于全球定位系統(tǒng)技術(shù)等。但是,對于星系的運(yùn)動來說,根據(jù)引力模型計(jì)算的結(jié)果誤差太大;也就是說,根據(jù)星系質(zhì)量元法解釋星系的運(yùn)動。于是,物理學(xué)家們認(rèn)為,宇宙中一定還有暗物質(zhì)(暗物質(zhì)與光不相互作用,所以看不到)。物理學(xué)家引入“暗物質(zhì)”就是為了

14、微調(diào)某些參數(shù)來確保觀測結(jié)果與理論相符合。這意味著,牛頓發(fā)現(xiàn)并經(jīng)愛因斯坦的相對論進(jìn)一步擴(kuò)展的引力模型并非完全正確。萬有引力定律及廣義相對論可能有缺陷。從另一個(gè)角度來看,萬有引力定律(引力模型)是解釋物體相互之間作用的引力的定律。該定律指出,任意兩個(gè)質(zhì)點(diǎn)之間,通過連心線方向上的力相互吸引。萬有引力的的大小與它們兩個(gè)的質(zhì)量乘積成正比,并與兩個(gè)質(zhì)點(diǎn)之間距離的平方成反比。值得注意的是,宇宙天體的質(zhì)量是一個(gè)重要的物理學(xué)量,當(dāng)小質(zhì)量天體遇到大質(zhì)量天體的時(shí),就只能處于從屬地位。衛(wèi)星的質(zhì)量小于行星,因此,衛(wèi)星圍繞行星運(yùn)行;行星的質(zhì)量小于恒星,因此,行星圍繞恒星運(yùn)行。顯然,當(dāng)小質(zhì)量天體遇到大質(zhì)量天體的時(shí),就會被其

15、引力捕獲為其附屬天體??傊?,從已有的大量觀測數(shù)據(jù)來看,該引力模型成立的邊界條件是,一個(gè)大質(zhì)量物體及一個(gè)小質(zhì)量物體之間的聯(lián)系。重新思考牛頓及愛因斯坦的研究成果是完全必要的。1質(zhì)點(diǎn)系的內(nèi)涵1.1質(zhì)點(diǎn)系將物體視作是一個(gè)具有質(zhì)量,但是大小及形狀可忽略不計(jì)的理想物體,就稱為質(zhì)點(diǎn);質(zhì)點(diǎn)是具有質(zhì)量但不存在體積與形狀的點(diǎn)。兩個(gè)(或兩個(gè))以上相互具有聯(lián)系的的質(zhì)點(diǎn)組成的力學(xué)系統(tǒng)就稱為質(zhì)點(diǎn)系(質(zhì)點(diǎn)組)。而,質(zhì)心是多質(zhì)點(diǎn)系統(tǒng)的質(zhì)量中心;若對該質(zhì)心施加力,質(zhì)點(diǎn)系統(tǒng)將會沿著力的方向運(yùn)動(不會旋轉(zhuǎn))。質(zhì)點(diǎn)位置對質(zhì)量加權(quán)取平均值,就可得質(zhì)心位置。換句話說,質(zhì)點(diǎn)系的質(zhì)量中心是指物質(zhì)系統(tǒng)上被認(rèn)為質(zhì)量集中在此的質(zhì)心(一個(gè)假想點(diǎn))。

16、該質(zhì)點(diǎn)的質(zhì)量等價(jià)于質(zhì)點(diǎn)系的總質(zhì)量(表征質(zhì)點(diǎn)系的質(zhì)量分布);而該質(zhì)點(diǎn)上的作用力則等于作用于質(zhì)點(diǎn)系上的所有外力平行地移到這一點(diǎn)上;質(zhì)點(diǎn)系的質(zhì)心運(yùn)動跟一個(gè)位于質(zhì)心的質(zhì)點(diǎn)的運(yùn)動方式相同。顯然,假如,用,m1,m2,.,mi,.,mn,分別表達(dá)質(zhì)點(diǎn)系中各質(zhì)點(diǎn)的質(zhì)量;用,r1,r2,.,ri,rn,分別表示各質(zhì)點(diǎn)的矢徑;用,rc,表達(dá)質(zhì)心矢徑;用,M,表示質(zhì)點(diǎn)系的總質(zhì)量。則有,rc=mi rimi = mi riM 。從另一個(gè)角度來看,則有,xc=mi ximi = mi xiM ; yc=mi yimi = mi yiM ; zc=mi zimi = mi ziM 。更進(jìn)一步來說,用,V1,V2,.,V

17、i,Vn,分別表示各質(zhì)點(diǎn)的矢量速度;用,Vc,表達(dá)質(zhì)心矢量速度。則有, Vc=mi Vimi = mi ViM。用,1,2,.,i,.n,分別表示各質(zhì)點(diǎn)的矢量加速度;用,c,表達(dá)質(zhì)心矢量加速度。則有,c=mi imi = mi iM。這意味著,d2 rcdt2 = Fi(O)M,其中,F(xiàn)i(O),表達(dá)作用于質(zhì)點(diǎn)系上的所有外力的矢量和。1.2質(zhì)點(diǎn)系的質(zhì)心對于兩個(gè)物體(質(zhì)點(diǎn))共同構(gòu)成一個(gè)質(zhì)點(diǎn)系來說;因此,該質(zhì)點(diǎn)系一定存在一個(gè)質(zhì)心(O),而質(zhì)心(O)一定在兩個(gè)物體(質(zhì)點(diǎn))連心線上。該質(zhì)點(diǎn)系的質(zhì)心(O)在兩個(gè)物體的連心線(直線)上;但是,該質(zhì)點(diǎn)系的質(zhì)心(O)并不一定正好在連心線(直線)的正中間;類似于

18、,對于杠桿平衡來說,杠桿的支點(diǎn)(O)并不一定要求在正中間。第一個(gè)物體相對于該質(zhì)點(diǎn)系的質(zhì)心(O)的離心力(F1);可表達(dá)為:F1=m1(2)r1;其中,F(xiàn)1,第一個(gè)物體相對于該質(zhì)點(diǎn)系的質(zhì)心(O)的的離心力;m1,第一個(gè)物體的質(zhì)量(質(zhì)量荷,引力荷);r1,第一個(gè)物體到達(dá)該質(zhì)點(diǎn)系的質(zhì)心(O)的距離;,第一個(gè)物體到達(dá)相對于該質(zhì)點(diǎn)系的質(zhì)心(O)的角速度;第二個(gè)物體相對于該質(zhì)點(diǎn)系的質(zhì)心(O)的離心力(F2);可表達(dá)為:F2=m2(2)r2;其中,F(xiàn)2,第二個(gè)物體相對于該質(zhì)點(diǎn)系的質(zhì)心(O)的的離心力;m2,第二個(gè)物體的質(zhì)量(質(zhì)量荷,引力荷);r2,第二個(gè)物體到達(dá)該質(zhì)點(diǎn)系的質(zhì)心(O)的距離;,第二個(gè)物體到達(dá)相

19、對于該質(zhì)點(diǎn)系的質(zhì)心(O)的角速度。顯然,F(xiàn)1=m1(2)r1=F2=m2(2)r2;或,m1r1=m2r2。值得一提的是,從該兩個(gè)物體輻射相同頻率的光子到達(dá)該質(zhì)點(diǎn)系的質(zhì)心(O),則該質(zhì)點(diǎn)系的質(zhì)心(O)收到的光子頻率完全相同。2經(jīng)典萬有引力定律表達(dá)式從經(jīng)典萬有引力定律來看,對于一個(gè)物體(AN)與另一個(gè)物體(AM)之間聯(lián)系來說: 兩個(gè)物體之間的萬有引力(F)來說,可表達(dá)為:F=Gm1m2L(2) = m11= m22 ;其中,F(xiàn),萬有引力,量綱,*L(1)T(-2);G,萬有引力常數(shù),量綱,;m1,第一個(gè)物體的質(zhì)量(質(zhì)量荷),量綱,;m2,第二個(gè)物體的質(zhì)量(質(zhì)量荷),量綱,;L ,該兩個(gè)物體之間距

20、離,量綱,L(1)T(0)L(1)T(-2)L(1)T(-2)。根據(jù)經(jīng)典萬有引力定律,兩個(gè)物體之間的萬有引力(F)也可表達(dá)為:F=Gm1m2L(2) =(4G)m1m24L(2)=(4G)m1m2SL=(4G)m1m24(r1+r2)(2)=(4G)m1m24r1(2)+r2(2)+2r1r2=(4G)m1m1Sr1+Sr2+4(2r1r2)值得一提的是,SL=4L(2)=4(r1+r2)(2)=4r1(2)+r2(2)+2r1r2=4r1(2)+4r2(2)+4(2r1r2)=Sr1+Sr2+4(2r1r2)。其中,F(xiàn),經(jīng)典萬有引力;L ,該兩個(gè)物體之間的距離;r1,第一個(gè)物體到該質(zhì)點(diǎn)系的質(zhì)

21、心(O)的距離;r2,第二個(gè)物體到該質(zhì)點(diǎn)系的質(zhì)心(O)的距離;SL,球面的面積(半徑是L );Sr1,球面的面積(半徑是r1);Sr2,球面的面積(半徑是r2 )。3萬有引力定律的拓展在萬有引力作用下,由于月球的質(zhì)量遠(yuǎn)小于地球,所以,月球圍繞著地球旋轉(zhuǎn);由于地球的質(zhì)量遠(yuǎn)小于太陽,所以,地球圍繞著太陽旋轉(zhuǎn);由于太陽的質(zhì)量遠(yuǎn)小于銀河中心,所以,太陽圍繞著銀河中心旋轉(zhuǎn)。這意味著,宇宙中的天體之間的運(yùn)動總是圍繞一個(gè)共同的質(zhì)心進(jìn)行運(yùn)動。由于,質(zhì)量大的物體與共同質(zhì)心的距離總是更近;因此,質(zhì)量大的物體總是處于質(zhì)心系的中心。由于整個(gè)宇宙都在不停地旋轉(zhuǎn)當(dāng)中,因此,宇宙具有核式結(jié)構(gòu)。假設(shè),月球與地球的質(zhì)量大小完全

22、相同,則月球與地球?qū)⑾嗷ダ@行。假設(shè),月球比地球的質(zhì)量大很多(月球就類似于太陽),則地球?qū)@月球運(yùn)行。觀測結(jié)果表明,經(jīng)典萬有引力定律成立的條件是,質(zhì)量較小的物體圍繞質(zhì)量較大的物體運(yùn)行。值得一提的是, 對于一個(gè)鐵球與地球來說,地球?qū)﹁F球有萬有引力;鐵球?qū)Φ厍蛞灿腥f有引力,鐵球?qū)Φ厍虻娜f有引力,將使得地球向鐵球運(yùn)動;這意味著,大的鐵球?qū)⒈刃〉蔫F球更快落地。萬有引力定律有必要進(jìn)行拓展,根據(jù)質(zhì)點(diǎn)系的質(zhì)心(O)內(nèi)涵及物理學(xué)對稱性原理,兩個(gè)物體之間拓展的萬有引力(F/)應(yīng)該表達(dá)為:F/=fnm(1/2)m1m24r1(2)+r2(2) =fnm(1/2)m1m24r1(2)+4r2(2)=fnm(1/2)

23、m1m2Sr1+Sr2 =(fnm/8)m1m2r1(2)+r2(2)其中,F(xiàn)/,拓展萬有引力;fnm,萬有引力耦合系數(shù),量綱,;r1,第一個(gè)物體到該質(zhì)點(diǎn)系的質(zhì)心(O)的距離;r2,第二個(gè)物體到該質(zhì)點(diǎn)系的質(zhì)心(O)的距離;Sr1,球面的面積(半徑是r1);Sr2,球面的面積(半徑是r2)。第一種情況,質(zhì)量較小的物體圍繞質(zhì)量較大的物體運(yùn)行;此時(shí),r2r1,及,r1L 。顯然, r1(2)+r2(2)/(r1+r2)(2)1。拓展的萬有引力(F/)可表達(dá)為:F/=fnm(1/2)m1m24r1(2)+r2(2) =fnm(1/2)m1m2Sr1+Sr2 fnm(1/2)m1m24(r1+r2)(2

24、)=fnmm1m28L(2)=(fnm/8)m1m2L(2) =Gm1m2L(2)= F ;假設(shè),G=fnm/8這意味著,質(zhì)量較小的物體圍繞質(zhì)量較大的物體運(yùn)行時(shí),經(jīng)典萬有引力定律成立。換句話說,質(zhì)量較小的物體圍繞質(zhì)量較大的物體運(yùn)行時(shí),拓展的萬有引力(F/)約等于經(jīng)典萬有引力(F)。第二種情況,兩個(gè)具有完全相同質(zhì)量的物體相互繞行時(shí),則有,r1=r2 ;顯然, r1(2)+r2(2)/(r1+r2)(2)=r1(2)+r2(2)/r1(2)+r2(2)+2r1r2=1/2, 或,2r1(2)+r2(2)=(r1+r2)(2);在這種情況下,拓展的萬有引力(F/)可表達(dá)為:F/=fnm(1/2)m1

25、m24r1(2)+r2(2) =fnmm1m242r1(2)+r2(2)=fnmm1m24r1(2)+r2(2)+2r1r2= fnmm1m24(r1+r2)(2)= fnmm1m24L(2)=(fnm/4)m1m2L(2)=2G m1m2L(2) =2 F;這意味著,兩個(gè)具有完全相同質(zhì)量的物體相互繞行時(shí),拓展的萬有引力(F/)是經(jīng)典萬有引力(F)的兩倍。值得一提的是,庫侖定律,就類似于這種情況;這也是庫侖力大于經(jīng)典萬有引力的原因之一??傊?,拓展的萬有引力(F/)總是大于經(jīng)典萬有引力(F),即,F(xiàn)/F。4庫侖力定律對于一個(gè)正電荷及一個(gè)負(fù)電荷之間的庫侖力來說,可表達(dá)為:Fe=140q1q2L(2

26、)=140q1q2(r1+r2)(2)=140q1q22r1(2)+r2(2) = 140(1/2)q1q2r1(2)+r2(2) = fp4(1/2)q1q2r1(2)+r2(2);其中,F(xiàn)e,庫侖力;fp,普朗克頻率;0,真空介電常數(shù);q1,q2,單位電荷;r1,第一個(gè)電荷到該質(zhì)點(diǎn)系的質(zhì)心(O)的距離;r2,第二個(gè)電荷到該質(zhì)點(diǎn)系的質(zhì)心(O)的距離;L ,該兩個(gè)單元電荷之間的距離。5廣義萬有引力兩個(gè)物體之間的廣義萬有引力(Fnm)可表達(dá)為:Fnm=(fnm/4)(1/2)m1m2r1(2)+r2(2)=fnm(1/2)m1m24r1(2)+r2(2)=fnm(1/2)m1m2Sr1+Sr2

27、=(fnpfmp)(1/2)m1m24r1(2)+r2(2) =(fnpfmp)(1/2)m1m24r1(2)+4r2(2)=(fnpfmp)(1/2)m1m2Sr1+Sr2 =(fnpfmp/4 )(1/2)m1m2r1(2)+r2(2)=m1m2(4/3)r1(3)(4/3)r2(3) /4(1/2)m1m2r1(2)+r2(2)=34m1m2r1(3)r2(3)/4 (1/2)m1m2r1(2)+r2(2)=316(2)m1m2r1(3)r2(3)(1/2)m1m2r1(2)+r2(2) =m1(4/3)r1(3)m2(4/3)r2(3)(1/2)m1m24r1(2)+4r2(2) =1

28、2m1(4/3)r1(3)m2(4/3)r2(3)m1m24r1(2)+4r2(2) ;從另一個(gè)角度來看,F(xiàn)nm*4r1(2)+4r2(2)=m1(4/3)r1(3)m2(4/3)r2(3) *(1/2)*(m1m2)值得一提的是,fnm=fnpfmp=m1m2(4/3)r1(3)(4/3)r2(3)=m1(4/3)r1(3)m2(4/3)r2(3) =34m1m2r1(3)r2(3);其中,fnp=m1(4/3)r1(3)=34m1r1(3),第一個(gè)物體的引力耦合系數(shù);fmp=m2(4/3)r2(3)=34m2r2(3),第二個(gè)物體的引力耦合系數(shù);fnm=fnpfmp,兩個(gè)物體之間的萬有引力

29、耦合系數(shù),量綱,L(0)T(-1);Fnm,廣義萬有引力;m1,第一個(gè)物體的質(zhì)量(質(zhì)量荷,引力荷);m2,第二個(gè)物體的質(zhì)量(質(zhì)量荷,引力荷);Sr1,球面的面積(半徑是r1);Sr2,球面的面積(半徑是r2);fnp=1,第一個(gè)孤立量子體系(物體)的耦合質(zhì)量密度,量綱,;fmp=2,第二個(gè)孤立量子體系(物體)的耦合質(zhì)量密度,量綱,;r1,第一個(gè)孤立量子體系(物體)到該質(zhì)點(diǎn)系的質(zhì)心(O)的距離;r2,第二個(gè)孤立量子體系(物體)到該質(zhì)點(diǎn)系的質(zhì)心(O)的距離;fnm=fnpfmp,萬有引力耦合系數(shù)。這意味著,物體的耦合質(zhì)量密度越大,物體之間的萬有引力耦合系數(shù)(fnm)就越大,物體相互之間的廣義萬有引

30、力也越大。這意味著,萬有引力常數(shù)(G)可能并不是物理學(xué)常數(shù)。例如1,質(zhì)量較小的物體圍繞質(zhì)量較大的物體運(yùn)行;此時(shí),r2r1,r1L;顯然,r1(2)+r2(2)/(r1+r2)(2)1;則有,F(xiàn)nm=(fnm/8)m1m2r1(2)+r2(2)=fnmm1m28r1(2)+r2(2)=fnmm1m22Sr1+Sr2 =(fnpfmp)m1m28r1(2)+r2(2) =(fnpfmp)m1m22Sr1+Sr2=(fnpfmp/8 )m1m2r1(2)+r2(2) (fnpfmp/8 )m1m2r1(2)1+r2(2)/r1(2)=(fnpfmp/8 )m1m2r1(2)1+m1(2)/m2(2)

31、(fnpfmp/8 )m1m2(r1+r2)(2)=(fnpfmp/8)m1m2L(2)=332(2)m1m2r1(3)r2(3)m1m2L(2) 。例如2,兩個(gè)具有完全相同質(zhì)量的物體相互繞行時(shí);則有,F(xiàn)nm=(fnm/8)m1m2r1(2)+r2(2)=fnmm1m28r1(2)+r2(2)=fnmm1m22Sr1+Sr2 =(fnpfmp)m1m28r1(2)+r2(2) =(fnpfmp)m1m22Sr1+Sr2=(fnpfmp/4 )m1m2(r1+r2)(2) =(fnpfmp/4 )m1m2L(2)=34m1m2r1(3)r2(3)/4*m1m2L(2)=316(2)m1m2r1(

32、3)r2(3)*m1m2L(2)。6廣義萬有引力驗(yàn)證實(shí)驗(yàn)根據(jù)廣義萬有引力理論,萬有引力與兩個(gè)物體的質(zhì)量大小有關(guān);萬有引力與兩個(gè)物體的質(zhì)量密度有關(guān);萬有引力與兩個(gè)物體的質(zhì)量之比有關(guān);萬有引力與兩個(gè)物體之間的距離有關(guān)。第一類驗(yàn)證實(shí)驗(yàn),質(zhì)量密度的影響;在相同的觀測設(shè)備及相同的背景空間條件之下,測量萬有引力常數(shù)。如果兩個(gè)物體具有相同的質(zhì)量,則該兩個(gè)物體的質(zhì)量密度越大,測得的萬有引力常數(shù)越大。這意味著,萬有引力常數(shù)與質(zhì)量密度有關(guān)。第二類驗(yàn)證實(shí)驗(yàn),兩個(gè)物體的質(zhì)量差距(質(zhì)量比)的影響;在相同的觀測設(shè)備及相同的背景空間條件之下,測量萬有引力常數(shù)。如果兩個(gè)物體具有相同的質(zhì)量密度,則兩個(gè)物體的質(zhì)量差距(質(zhì)量比)越

33、大,測得的萬有引力常數(shù)越小。第三類驗(yàn)證實(shí)驗(yàn),這意味著,萬有引力常數(shù)也與兩個(gè)物體的質(zhì)量比(m1m2)有關(guān)。例如,由于中子星的質(zhì)量密度極高,導(dǎo)致中子星與中子星之間的萬有引力極大;因此,中子星與中子星之間的碰撞將產(chǎn)生明顯的引力波。而普通恒星與恒星之間的合并,只能產(chǎn)生極弱的引力波??傊?jīng)典的萬有引力定律是廣義萬有引力定律在一定邊界條件下的特例。庫侖定律也是萬有廣義引力定律在一定邊界條件下的特例。值得注意的是,耦合質(zhì)量密度與質(zhì)量密度是有區(qū)別的。例如,如果一個(gè)瓶子內(nèi)裝滿水,則對于瓶內(nèi)的水來說,瓶內(nèi)水的耦合質(zhì)量密度等于水的質(zhì)量密度。如果一個(gè)瓶子內(nèi)只裝滿一半水,則對于瓶內(nèi)的水來說,瓶內(nèi)水的耦合質(zhì)量密度等于水

34、的質(zhì)量密度的一半。因?yàn)?,瓶子?nèi)的空間保持不變,但瓶子內(nèi)的水量少了一半。同樣的道理,如果一個(gè)瓶子內(nèi)裝的水量是固定的,但瓶子的空間增大一倍;則大瓶子內(nèi),耦合質(zhì)量密度是水的質(zhì)量密度的一半。這意味著,如果質(zhì)量保持守恒,則,耦合質(zhì)量密度與空間的大小有關(guān)。值得一提的是,對于兩個(gè)物體組成的質(zhì)點(diǎn)系來說,哈密頓量(H)是總個(gè)質(zhì)點(diǎn)系相對于質(zhì)點(diǎn)系質(zhì)心(O)的總能量。而,拉氏量()是指某一個(gè)物體相對于質(zhì)點(diǎn)系質(zhì)心(O)的總能量。換句話說,某一個(gè)物體的拉氏量()就是該物體相對質(zhì)心(O)的動能(T)減去該物體相對于質(zhì)心(O)的的勢能(U);動能是考慮空間時(shí)間對稱性的結(jié)果,而勢能是考慮牛頓第二定律的結(jié)果。拉氏量()可表達(dá)為:

35、=T+(U);其中,拉氏量,量綱,*L(2)T(-2);T,動能,量綱,*L(2)T(-2);U,勢能,量綱,*L(1)T(-2)L(1)T(0)L(0)T(-1)L(1)T(0)L(1)T(-2)。2,廣義坐標(biāo)及廣義速度的本質(zhì)2, The essence of generalized coordinates and generalized velocity可采用廣義坐標(biāo)(qi)及廣義速度(qi)來表達(dá)一個(gè)系統(tǒng);其中,i1,2,3,.,s。A system can be expressed by generalized coordinates (qi) and generalized velo

36、city (qi); where, i1,2,3,.,s.這意味著,一組具有確定取值的廣義坐標(biāo)(qi)及廣義速度(qi),將能夠唯一對應(yīng)到系統(tǒng)的一個(gè)確定狀態(tài)。This means that a set of generalized coordinates (qi) and generalized velocities (qi) with definite values will be able to uniquely correspond to a definite state of the system.例如,對于質(zhì)點(diǎn)系來說,那每個(gè)質(zhì)點(diǎn)的坐標(biāo)及速度都給定了,就可確定該系統(tǒng)的狀態(tài)了。值得注意的

37、是,每個(gè)質(zhì)點(diǎn)的坐標(biāo)都是相對于質(zhì)點(diǎn)系的質(zhì)心(O);每個(gè)質(zhì)點(diǎn)的速度也都是相對于質(zhì)點(diǎn)系的質(zhì)心(O)。For example, for a particle system, the coordinates and velocity of each particle are given, and the state of the system can be determined.It is worth noting that the coordinates of each particle are relative to the center of mass (O) of the particle sy

38、stem; the velocity of each particle is also relative to the center of mass (O) of the particle system.具體來說,廣義坐標(biāo)(qi)及廣義速度(qi)都是相對質(zhì)點(diǎn)系的質(zhì)心(O)。Specifically, the generalized coordinates (qi) and the generalized velocity (qi) are both relative to the center of mass (O) of the particle system.更進(jìn)一步來說,表達(dá)系統(tǒng)的參數(shù)

39、不一定就是廣義坐標(biāo)及廣義速度;但是,該系統(tǒng)的參數(shù)都必須是相對于質(zhì)點(diǎn)系的質(zhì)心(O)。Furthermore, the parameters expressing the system are not necessarily generalized coordinates and generalized velocities; however, the parameters of the system must be relative to the center of mass (O) of the particle system.由于,系統(tǒng)的一個(gè)確定狀態(tài)都能唯一對應(yīng)到一組確定取值的廣義坐標(biāo)(qi

40、)及廣義速度(qi)。因此,在一段確定的演化過程中, 每一個(gè)時(shí)刻都會對應(yīng)到一組確定取值的廣義坐標(biāo)(qi)及廣義速度(qi)。Because, a definite state of the system can uniquely correspond to a set of generalized coordinates (qi) and generalized velocity (qi) of definite values.Therefore, in a certain evolution process, each moment corresponds to a set of gener

41、alized coordinates (qi) and generalized velocities (qi)with certain values.此時(shí),廣義坐標(biāo)(qi),可用,qi(t),表達(dá);廣義速度(qi),可用,qi(t),表達(dá)。At this time, generalized coordinates (qi), available, qi(t), expressed; generalized velocity (qi), available, qi(t), expressed.這意味著,在一段確定的演化過程中,廣義坐標(biāo),qi(t),及廣義速度, qi(t),都是時(shí)間及坐標(biāo)的確定函

42、數(shù)。This means that, in a certain evolution process, the generalized coordinates, qi(t), and the generalized velocity, qi(t), are deterministic functions of time and coordinates.值得一提的是,演化路徑有多條,但真實(shí)發(fā)生的演化路徑只有一條(依據(jù)量子三維常數(shù)理論)。It is worth mentioning that there are multiple evolution paths, but there is only

43、one evolution path that actually occurs (according to the quantum three-dimensional constant theory).換句話說,真實(shí)發(fā)生的演化路徑等價(jià)于確定廣義坐標(biāo),qi(t),與廣義速度, qi(t),的真實(shí)函數(shù)表達(dá)式。In other words, the evolution path that actually occurs is equivalent to determining the true functional expression of the generalized coordinates,

44、 qi(t), and the generalized velocities, qi(t).拉氏量( )就是廣義坐標(biāo),qi(t),及廣義速度, qi(t) ,的復(fù)合函數(shù)。The Laplace( ) is a composite function of the generalized coordinates, qi(t), and the generalized velocity, qi(t) .作用量(S)是 拉氏量( ) 的泛函。Action (S) is a functional of Laplace .值得一提的是,從另一個(gè)角度來看,作用量(S)是廣義坐標(biāo),qi(t),及廣義速度, q

45、i(t) ,的泛函。嚴(yán)格來說,作用量(S)是廣義坐標(biāo),qi(t),及廣義動量, P(t) ,的泛函。It is worth mentioning that,From another perspective, the action (S) is a functional of the generalized coordinates, qi(t), and the generalized velocity, qi(t) .Strictly speaking, the action(S) is a functional of the generalized coordinates, qi(t), a

46、nd the generalized momentum, P(t) .這意味著,一條確定的演化路徑將對應(yīng)于作用量(S)的一個(gè)確定取值。因此,作用量(S)就是演化路徑的函數(shù)。根據(jù)作用量原理,真實(shí)的路徑就是讓作用量(S)取極值。This means that a definite evolutionary path will correspond to a definite value of the action (S).Therefore, the action (S)is a function of the evolutionary path.According to the action p

47、rinciple, the real path is to let the action (S) take the extreme value.拉格朗日量(拉氏量)具有對稱性,這意味著,以某種特定方式轉(zhuǎn)動(或移動)時(shí),其并不會發(fā)生改變。拉格朗日量(拉氏量)的對稱性很重要,利用其對稱性可構(gòu)造守恒量。物理學(xué)的守恒量是保持不變的可觀測物理量。能量守恒是時(shí)間平移對稱性的結(jié)果,時(shí)間平移不變性意味著拉格朗日量(拉氏量)本身不顯含時(shí)間。拉格朗日量(拉氏量)的本質(zhì)就是該孤立量子體系的能量。這意味著,如果一個(gè)孤立量子體系統(tǒng)的背景不隨時(shí)間改變,則該孤立量子體系統(tǒng)的總能量將不隨時(shí)間改變。同樣的道理,一個(gè)系統(tǒng)具有旋轉(zhuǎn)

48、對稱性,就可得到角動量守恒。量子力學(xué)系統(tǒng)對稱性與量子角動量守恒相對應(yīng);電子的電荷及自旋守恒體現(xiàn)了電子所遵循的對稱性。 The logic of Lagrangian quantitiesLagrangians (Laplaces) have symmetry, which means that when they are turned (or moved) in a certain way, they do not change. The symmetry of the Lagrangian (Lagrangian) is very important, and a conserved qua

49、ntity can be constructed by using its symmetry.Conserved quantities in physics are observable physical quantities that remain unchanged. Energy conservation is the result of time-translation symmetry, and time-translation invariance means that the Lagrangian (Laplace) itself does not contain time. T

50、he essence of Lagrangian quantity (Laplace quantity) is the energy of this isolated quantum system.This means that if the background of an isolated quantum body system does not change with time, the total energy of the isolated quantum body system will not change with time.In the same way, if a syst

51、em has rotational symmetry, the conservation of angular momentum can be obtained. The symmetry of quantum mechanical systems corresponds to the conservation of quantum angular momentum; the conservation of charge and spin of electrons reflects the symmetry that electrons follow.根據(jù)量子三維常數(shù)理論,對于一個(gè)物體(由荷及

52、相應(yīng)的場組成)來說,假如該物體由N個(gè)基本粒子組成,則可表達(dá)為:According to the quantum three-dimensional constant theory, for an object (composed of charge and corresponding field), if the object is composed of N elementary particles, it can be expressed as: ;及and,。其中,該物體的空間荷(內(nèi)稟的三維空間),量綱,;,該物體的內(nèi)稟一維空間速度(內(nèi)稟的聲速,信號速度),量綱,L(1)T(-1)L(3

53、)T(-3);,該物體的普朗克頻率,量綱,;,該物體的普朗克波長,量綱,;,該物體的普朗克質(zhì)量,量綱,;,該物體的普朗克能量,量綱,*L(2)T(-2)L(2)T(-3)。in,, the space charge of the object (intrinsic three-dimensional space), dimension, ;, the intrinsic one-dimensional space velocity of the object (intrinsic sound velocity, signal velocity), dimension, L(1)T(-1)L(3

54、)T(-3);, the Planck frequency of the object, dimension, ;, the Planck wavelength of the object, dimension, ;, the Planck mass of the object, dimension, ;, the Planck energy of the object, dimension, *L(2)T(-2)L(2)T(-3).這意味著物質(zhì)的量綱可表達(dá)為:This means that the dimension of matter can be expressed as: ;其中,物質(zhì)

55、的荷,具有信號速度;,物質(zhì)的場,超距。in,, the charge of a substance, has a signal velocity;,the field of matter, at a distance.假設(shè)該物體的空間荷(),在預(yù)先確定的時(shí)間點(diǎn)( )及時(shí)間點(diǎn)()之間進(jìn)行演化。It is assumed that the space charge () of the object evolves between a predetermined time point ( ) and a time point ().則可通過繪制一條在空間中延伸的路徑來表達(dá)物體的空間荷()演化過程,從

56、時(shí)間( )開始,到時(shí)間 ( )結(jié)束。Then the evolution process of the objects space charge () can be expressed by drawing a path extending in space, starting at time ( ) and ending at time ().如果從該物體溫度場()的角度來看,則類似于一個(gè)熱力圖隨著時(shí)間慢慢演化的過程。If viewed from the perspective of the objects temperature field (), it is similar to a p

57、rocess where a heat map slowly evolves over time.通過該物體的空間荷()及相應(yīng)的溫度場()的屬性;拉氏量(動能和勢能之差)在任何時(shí)間點(diǎn)都可給出一個(gè)確定的量(不隨參考系的改變而改變)。顯然,拉氏量(動能與勢能之差)不隨坐標(biāo)的選擇而改變。Through the properties of the objects space charge () and the corresponding temperature field (); the Laplace quantity (the difference between kinetic energy a

58、nd potential energy) can give a definite quantity at any point in time (does not change with the change of the reference frame) ).Obviously, the Laplace quantity (the difference between kinetic and potential energy) does not change with the choice of coordinates.例如,如果已知一個(gè)拉氏量( ),可計(jì)算拉氏量( )在兩個(gè)時(shí)間點(diǎn)之間的積分(

59、作用量);拉氏量( )從時(shí)間() 到時(shí)間()之間的總積分就稱為作用量()??杀磉_(dá)為:For example, if a Laplace value ( ) is known, the integral (action) of the Laplace value ( ) between two points in time can be calculated; the Laplace value is calculated from time () to time () The total integral between them is called the action (). It can

60、 be expressed as:,其中,作用量,量綱,*L(2)T(-2);,拉氏量,量綱,*L(2)T(-2)L(1)T(0)L(1)T(-1)L(0)T(1)L(0)T(1)。in,, action amount, dimension, *L(2)T(-2);, Laplace value, dimension, *L(2)T(-2)L(1)T(0)L(1)T(-1)L(0)T(1)L(0)T(1).這意味著,物體具有一種慣性,總是選擇最短時(shí)間到達(dá)終點(diǎn)。This means that objects have an inertia that always chooses the shor

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論