版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知、分別為雙曲線:(,)的左、右焦點(diǎn),過(guò)的直線交于、兩點(diǎn),為坐標(biāo)原點(diǎn),若,則的離心率為( )A2BCD2函數(shù)的單調(diào)遞增區(qū)間是( )ABCD3點(diǎn)為棱長(zhǎng)是2的正方體的內(nèi)切球球面上的動(dòng)點(diǎn),
2、點(diǎn)為的中點(diǎn),若滿足,則動(dòng)點(diǎn)的軌跡的長(zhǎng)度為( )ABCD4已知函數(shù),則函數(shù)的圖象大致為( )ABCD5如圖所示,矩形的對(duì)角線相交于點(diǎn),為的中點(diǎn),若,則等于( )ABCD6在聲學(xué)中,聲強(qiáng)級(jí)(單位:)由公式給出,其中為聲強(qiáng)(單位:).,那么( )ABCD7已知雙曲線的一條漸近線傾斜角為,則( )A3BCD8橢圓是日常生活中常見(jiàn)的圖形,在圓柱形的玻璃杯中盛半杯水,將杯體傾斜一個(gè)角度,水面的邊界即是橢圓.現(xiàn)有一高度為12厘米,底面半徑為3厘米的圓柱形玻璃杯,且杯中所盛水的體積恰為該玻璃杯容積的一半(玻璃厚度忽略不計(jì)),在玻璃杯傾斜的過(guò)程中(杯中的水不能溢出),杯中水面邊界所形成的橢圓的離心率的取值范圍是
3、( )ABCD9已知函數(shù),若,則等于( )A-3B-1C3D010已知,表示兩個(gè)不同的平面,l為內(nèi)的一條直線,則“是“l(fā)”的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件11金庸先生的武俠小說(shuō)射雕英雄傳第12回中有這樣一段情節(jié),“洪七公道:肉只五種,但豬羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有幾般變化,我可算不出了”.現(xiàn)有五種不同的肉,任何兩種(含兩種)以上的肉混合后的滋味都不一樣,則混合后可以組成的所有不同的滋味種數(shù)為( )A20B24C25D2612如圖所示的程序框圖,若輸入,則輸出的結(jié)果是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知
4、中,點(diǎn)是邊的中點(diǎn),的面積為,則線段的取值范圍是_.14已知的三個(gè)內(nèi)角為,且,成等差數(shù)列, 則的最小值為_(kāi),最大值為_(kāi).15的展開(kāi)式中的系數(shù)為_(kāi)(用具體數(shù)據(jù)作答).16已知半徑為的圓周上有一定點(diǎn),在圓周上等可能地任意取一點(diǎn)與點(diǎn)連接,則所得弦長(zhǎng)介于與之間的概率為_(kāi)三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)已知函數(shù) , (1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(shí),判斷函數(shù),()有幾個(gè)零點(diǎn),并證明你的結(jié)論;(3)設(shè)函數(shù),若函數(shù)在為增函數(shù),求實(shí)數(shù)的取值范圍18(12分)已知函數(shù),.(1)判斷函數(shù)在區(qū)間上的零點(diǎn)的個(gè)數(shù);(2)記函數(shù)在區(qū)間上的兩個(gè)極值點(diǎn)分別為、,求證:.19(12分
5、)已知函數(shù),且(1)若,求的最小值,并求此時(shí)的值;(2)若,求證:20(12分)在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系.(1)求曲線C的極坐標(biāo)方程;(2)直線(t為參數(shù))與曲線C交于A,B兩點(diǎn),求最大時(shí),直線l的直角坐標(biāo)方程.21(12分)某市計(jì)劃在一片空地上建一個(gè)集購(gòu)物、餐飲、娛樂(lè)為一體的大型綜合園區(qū),如圖,已知兩個(gè)購(gòu)物廣場(chǎng)的占地都呈正方形,它們的面積分別為13公頃和8公頃;美食城和歡樂(lè)大世界的占地也都呈正方形,分別記它們的面積為公頃和公頃;由購(gòu)物廣場(chǎng)、美食城和歡樂(lè)大世界圍成的兩塊公共綠地都呈三角形,分別記它們的面積為公頃和公頃.(
6、1)設(shè),用關(guān)于的函數(shù)表示,并求在區(qū)間上的最大值的近似值(精確到0.001公頃);(2)如果,并且,試分別求出、的值.22(10分)等差數(shù)列的公差為2, 分別等于等比數(shù)列的第2項(xiàng),第3項(xiàng),第4項(xiàng).(1)求數(shù)列和的通項(xiàng)公式;(2)若數(shù)列滿足,求數(shù)列的前2020項(xiàng)的和參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1D【解析】作出圖象,取AB中點(diǎn)E,連接EF2,設(shè)F1Ax,根據(jù)雙曲線定義可得x2a,再由勾股定理可得到c27a2,進(jìn)而得到e的值【詳解】解:取AB中點(diǎn)E,連接EF2,則由已知可得BF1EF2,F(xiàn)1AAEEB,設(shè)F1Ax,則由雙
7、曲線定義可得AF22a+x,BF1BF23x2ax2a,所以x2a,則EF22a,由勾股定理可得(4a)2+(2a)2(2c)2,所以c27a2,則e故選:D【點(diǎn)睛】本題考查雙曲線定義的應(yīng)用,考查離心率的求法,數(shù)形結(jié)合思想,屬于中檔題對(duì)于圓錐曲線中求離心率的問(wèn)題,關(guān)鍵是列出含有 中兩個(gè)量的方程,有時(shí)還要結(jié)合橢圓、雙曲線的定義對(duì)方程進(jìn)行整理,從而求出離心率.2D【解析】利用輔助角公式,化簡(jiǎn)函數(shù)的解析式,再根據(jù)正弦函數(shù)的單調(diào)性,并采用整體法,可得結(jié)果.【詳解】因?yàn)?,由,解得,即函?shù)的增區(qū)間為,所以當(dāng)時(shí),增區(qū)間的一個(gè)子集為.故選D.【點(diǎn)睛】本題考查了輔助角公式,考查正弦型函數(shù)的單調(diào)遞增區(qū)間,重點(diǎn)在于
8、把握正弦函數(shù)的單調(diào)性,同時(shí)對(duì)于整體法的應(yīng)用,使問(wèn)題化繁為簡(jiǎn),難度較易.3C【解析】設(shè)的中點(diǎn)為,利用正方形和正方體的性質(zhì),結(jié)合線面垂直的判定定理可以證明出平面,這樣可以確定動(dòng)點(diǎn)的軌跡,最后求出動(dòng)點(diǎn)的軌跡的長(zhǎng)度.【詳解】設(shè)的中點(diǎn)為,連接,因此有,而,而平面,因此有平面,所以動(dòng)點(diǎn)的軌跡平面與正方體的內(nèi)切球的交線. 正方體的棱長(zhǎng)為2,所以內(nèi)切球的半徑為,建立如下圖所示的以為坐標(biāo)原點(diǎn)的空間直角坐標(biāo)系:因此有,設(shè)平面的法向量為,所以有,因此到平面的距離為:,所以截面圓的半徑為:,因此動(dòng)點(diǎn)的軌跡的長(zhǎng)度為.故選:C【點(diǎn)睛】本題考查了線面垂直的判定定理的應(yīng)用,考查了立體幾何中軌跡問(wèn)題,考查了球截面的性質(zhì),考查了
9、空間想象能力和數(shù)學(xué)運(yùn)算能力.4A【解析】用排除法,通過(guò)函數(shù)圖像的性質(zhì)逐個(gè)選項(xiàng)進(jìn)行判斷,找出不符合函數(shù)解析式的圖像,最后剩下即為此函數(shù)的圖像.【詳解】設(shè),由于,排除B選項(xiàng);由于,所以,排除C選項(xiàng);由于當(dāng)時(shí),排除D選項(xiàng).故A選項(xiàng)正確.故選:A【點(diǎn)睛】本題考查了函數(shù)圖像的性質(zhì),屬于中檔題.5A【解析】由平面向量基本定理,化簡(jiǎn)得,所以,即可求解,得到答案【詳解】由平面向量基本定理,化簡(jiǎn),所以,即,故選A【點(diǎn)睛】本題主要考查了平面向量基本定理的應(yīng)用,其中解答熟記平面向量的基本定理,化簡(jiǎn)得到是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,數(shù)基礎(chǔ)題6D【解析】由得,分別算出和的值,從而得到的值.【詳解】,當(dāng)時(shí),當(dāng)時(shí)
10、,故選:D.【點(diǎn)睛】本小題主要考查對(duì)數(shù)運(yùn)算,屬于基礎(chǔ)題.7D【解析】由雙曲線方程可得漸近線方程,根據(jù)傾斜角可得漸近線斜率,由此構(gòu)造方程求得結(jié)果.【詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,解得:.故選:.【點(diǎn)睛】本題考查根據(jù)雙曲線漸近線傾斜角求解參數(shù)值的問(wèn)題,關(guān)鍵是明確直線傾斜角與斜率的關(guān)系;易錯(cuò)點(diǎn)是忽略方程表示雙曲線對(duì)于的范圍的要求.8C【解析】根據(jù)題意可知當(dāng)玻璃杯傾斜至杯中水剛好不溢出時(shí),水面邊界所形成橢圓的離心率最大,由橢圓的幾何性質(zhì)即可確定此時(shí)橢圓的離心率,進(jìn)而確定離心率的取值范圍.【詳解】當(dāng)玻璃杯傾斜至杯中水剛好不溢出時(shí),水面邊界所形成橢圓的離心率最大.此時(shí)橢圓
11、長(zhǎng)軸長(zhǎng)為,短軸長(zhǎng)為6,所以橢圓離心率,所以.故選:C【點(diǎn)睛】本題考查了橢圓的定義及其性質(zhì)的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.9D【解析】分析:因?yàn)轭}設(shè)中給出了的值,要求的值,故應(yīng)考慮兩者之間滿足的關(guān)系.詳解:由題設(shè)有,故有,所以,從而,故選D.點(diǎn)睛:本題考查函數(shù)的表示方法,解題時(shí)注意根據(jù)問(wèn)題的條件和求解的結(jié)論之間的關(guān)系去尋找函數(shù)的解析式要滿足的關(guān)系. 10A【解析】試題分析:利用面面平行和線面平行的定義和性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷解:根據(jù)題意,由于,表示兩個(gè)不同的平面,l為內(nèi)的一條直線,由于“,則根據(jù)面面平行的性質(zhì)定理可知,則必然中任何一條直線平行于另一個(gè)平面,條件可以推出結(jié)論,反之不成立
12、,“是“l(fā)”的充分不必要條件故選A考點(diǎn):必要條件、充分條件與充要條件的判斷;平面與平面平行的判定11D【解析】利用組合的意義可得混合后所有不同的滋味種數(shù)為,再利用組合數(shù)的計(jì)算公式可得所求的種數(shù).【詳解】混合后可以組成的所有不同的滋味種數(shù)為(種),故選:D.【點(diǎn)睛】本題考查組合的應(yīng)用,此類問(wèn)題注意實(shí)際問(wèn)題的合理轉(zhuǎn)化,本題屬于容易題.12B【解析】列舉出循環(huán)的每一步,可得出輸出結(jié)果.【詳解】,不成立,;不成立,;不成立,;成立,輸出的值為.故選:B.【點(diǎn)睛】本題考查利用程序框圖計(jì)算輸出結(jié)果,一般要將算法的每一步列舉出來(lái),考查計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13
13、【解析】設(shè),利用正弦定理,根據(jù),得到,再利用余弦定理得,平方相加得:,轉(zhuǎn)化為 有解問(wèn)題求解.【詳解】設(shè),所以, 即由余弦定理得,即 ,平方相加得:,即 ,令,設(shè) ,在上有解,所以 ,解得,即 ,故答案為:【點(diǎn)睛】本題主要考查正弦定理和余弦定理在平面幾何中的應(yīng)用,還考查了運(yùn)算求解的能力,屬于難題.14 【解析】根據(jù)正弦定理可得,利用余弦定理以及均值不等式,可得角的范圍,然后構(gòu)造函數(shù),利用導(dǎo)數(shù),研究函數(shù)性質(zhì),可得結(jié)果.【詳解】由,成等差數(shù)列所以所以又化簡(jiǎn)可得當(dāng)且僅當(dāng)時(shí),取等號(hào)又,所以令,則當(dāng),即時(shí),當(dāng),即時(shí),則在遞增,在遞減所以由,所以所以的最小值為最大值為故答案為:,【點(diǎn)睛】本題考查等差數(shù)列、正
14、弦定理、余弦定理,還考查了不等式、導(dǎo)數(shù)的綜合應(yīng)用,難點(diǎn)在于根據(jù)余弦定理以及不等式求出,考驗(yàn)分析能力以及邏輯思維能力,屬難題.15【解析】利用二項(xiàng)展開(kāi)式的通項(xiàng)公式可求的系數(shù).【詳解】的展開(kāi)式的通項(xiàng)公式為,令,故,故的系數(shù)為.故答案為:.【點(diǎn)睛】本題考查二項(xiàng)展開(kāi)式中指定項(xiàng)的系數(shù),注意利用通項(xiàng)公式來(lái)計(jì)算,本題屬于容易題.16【解析】在圓上其他位置任取一點(diǎn)B,設(shè)圓半徑為R,其中滿足條件AB弦長(zhǎng)介于與之間的弧長(zhǎng)為 2R,則AB弦的長(zhǎng)度大于等于半徑長(zhǎng)度的概率P=;故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(1)單調(diào)增區(qū)間,單調(diào)減區(qū)間為,;(2)有2個(gè)零點(diǎn),證明見(jiàn)解析;(3
15、)【解析】對(duì)函數(shù)求導(dǎo),利用導(dǎo)數(shù)的正負(fù)判斷函數(shù)的單調(diào)區(qū)間即可;函數(shù)有2個(gè)零點(diǎn).根據(jù)函數(shù)的零點(diǎn)存在性定理即可證明;記函數(shù),求導(dǎo)后利用單調(diào)性求得,由零點(diǎn)存在性定理及單調(diào)性知存在唯一的,使,求得為分段函數(shù),求導(dǎo)后分情況討論:當(dāng)時(shí),利用函數(shù)的單調(diào)性將問(wèn)題轉(zhuǎn)化為的問(wèn)題;當(dāng)時(shí),當(dāng)時(shí),在上恒成立,從而求得的取值范圍.【詳解】(1)由題意知,,列表如下:02 0 極小值 極大值 所以函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,. (2)函數(shù)有2個(gè)零點(diǎn).證明如下: 因?yàn)闀r(shí),所以,因?yàn)?所以在恒成立,在上單調(diào)遞增,由,且在上單調(diào)遞增且連續(xù)知,函數(shù)在上僅有一個(gè)零點(diǎn),由(1)可得時(shí),,即,故時(shí),所以,由得,平方得,所以,因?yàn)?,?/p>
16、以在上恒成立,所以函數(shù)在上單調(diào)遞減,因?yàn)?所以,由,且在上單調(diào)遞減且連續(xù)得在上僅有一個(gè)零點(diǎn),綜上可知:函數(shù)有2個(gè)零點(diǎn). (3)記函數(shù),下面考察的符號(hào)求導(dǎo)得當(dāng)時(shí)恒成立當(dāng)時(shí),因?yàn)?,所以在上恒成立,故在上單調(diào)遞減,又因?yàn)樵谏线B續(xù),所以由函數(shù)的零點(diǎn)存在性定理得存在唯一的,使, ,因?yàn)?所以 因?yàn)楹瘮?shù)在上單調(diào)遞增,所以在,上恒成立當(dāng)時(shí),在上恒成立,即在上恒成立記,則,當(dāng)變化時(shí),變化情況如下表: 極小值 ,故,即當(dāng)時(shí),當(dāng)時(shí),在上恒成立綜合(1)(2)知, 實(shí)數(shù)的取值范圍是【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間、極值、最值和利用零點(diǎn)存在性定理判斷函數(shù)零點(diǎn)個(gè)數(shù)、利用分離參數(shù)法求參數(shù)的取值范圍;考查轉(zhuǎn)化與化歸
17、能力、邏輯推理能力、運(yùn)算求解能力;通過(guò)構(gòu)造函數(shù),利用零點(diǎn)存在性定理判斷其零點(diǎn),從而求出函數(shù)的表達(dá)式是求解本題的關(guān)鍵;屬于綜合型強(qiáng)、難度大型試題.18(1);(2)見(jiàn)解析.【解析】(1)利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性與極值,結(jié)合零點(diǎn)存在定理可得出結(jié)論;(2)設(shè)函數(shù)的極大值點(diǎn)和極小值點(diǎn)分別為、,由(1)知,且滿足,于是得出,由得,利用正切函數(shù)的單調(diào)性推導(dǎo)出,再利用正弦函數(shù)的單調(diào)性可得出結(jié)論.【詳解】(1),當(dāng)時(shí),則函數(shù)在上單調(diào)遞增;當(dāng)時(shí),則函數(shù)在上單調(diào)遞減;當(dāng)時(shí),則函數(shù)在上單調(diào)遞增.,.所以,函數(shù)在與不存在零點(diǎn),在區(qū)間和上各存在一個(gè)零點(diǎn).綜上所述,函數(shù)在區(qū)間上的零點(diǎn)的個(gè)數(shù)為;(2),.由(1)得
18、,在區(qū)間與上存在零點(diǎn),所以,函數(shù)在區(qū)間與上各存在一個(gè)極值點(diǎn)、,且,且滿足即,又,即,由在上單調(diào)遞增,得,再由在上單調(diào)遞減,得,即.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)個(gè)數(shù)問(wèn)題,同時(shí)也考查了利用導(dǎo)數(shù)證明不等式,考查分析問(wèn)題和解決問(wèn)題的能力,屬于難題.19(1)最小值為,此時(shí);(2)見(jiàn)解析【解析】(1)由已知得,法一:,根據(jù)二次函數(shù)的最值可求得;法二:運(yùn)用基本不等式構(gòu)造,可得最值;法三:運(yùn)用柯西不等式得:,可得最值;(2)由絕對(duì)值不等式得,又,可得證.【詳解】(1),法一:,的最小值為,此時(shí);法二:,即的最小值為,此時(shí);法三:由柯西不等式得:,,即的最小值為,此時(shí);(2),又,.【點(diǎn)睛】本題考查運(yùn)用基本不等式,柯西不等式,絕對(duì)值不等式進(jìn)行不等式的證明和求解函數(shù)的最值,屬于中檔題.20(1);(2).【解析】(1)利用消去參數(shù),得到曲線的普通方程,再將,代入普通方程,即可求出結(jié)論;(2)由(1)得曲線表示圓,直線曲線C交于A,B兩點(diǎn),最大值為圓的直徑,直線過(guò)圓心,即可求出直線的方程.【詳解】(1)由曲線C的參數(shù)方程(為參數(shù)),可得曲線C的普通方程為,因?yàn)?,所以曲線C的極坐標(biāo)方程為,即.(2)因?yàn)橹本€(t為參數(shù))表示的是過(guò)點(diǎn)的直線,曲線C的普通方程為,所以當(dāng)最大
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 房屋買賣合同效力認(rèn)定解析與探討
- 標(biāo)準(zhǔn)合同英文版采購(gòu)范本
- 宜人貸借款合同范本解讀
- 采購(gòu)合同范本固定位置
- 設(shè)備維修保養(yǎng)合同范本
- 軍事訂購(gòu)合同樣本
- 標(biāo)準(zhǔn)翻譯服務(wù)合同協(xié)議書(shū)格式
- 工程招標(biāo)文件港口工程
- 泰安房屋買賣合同風(fēng)險(xiǎn)提示
- 租賃合同權(quán)益轉(zhuǎn)讓聲明范例
- GB/T 1354-2018大米
- 超材料(metamaterials)教學(xué)講解課件
- 20XX年高校維穩(wěn)工作案例(四)
- 二年級(jí)上冊(cè)語(yǔ)文課件 語(yǔ)文園地八 人教部編版(共19張PPT)
- 2022(SOP)人民醫(yī)院倫理委員會(huì)標(biāo)準(zhǔn)操作規(guī)程
- xxxx道路硬化工程監(jiān)理細(xì)則
- 工作進(jìn)度表訂單生產(chǎn)進(jìn)度追蹤表
- 導(dǎo)演基礎(chǔ)理論與技巧-教學(xué)大綱
- 裝飾裝修施工階段安全風(fēng)險(xiǎn)四色分布圖
- 小學(xué)英語(yǔ)六年級(jí)上冊(cè)隨班就讀 教案
- 物理化學(xué)教案:第06章-膠體和界面化學(xué)-教案
評(píng)論
0/150
提交評(píng)論