版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2023學年高考數(shù)學模擬測試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2答題前,認真閱讀答題紙上的注意事項,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知復數(shù),若,則的值為( )A1BCD2已知數(shù)列為等差數(shù)列,為其前 項和,則( )ABCD3若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是( )A36 cm3B48 cm3C60 cm3D72 cm34若雙曲線的漸近線與圓相切,則雙
2、曲線的離心率為( )A2BCD5已知函數(shù)的導函數(shù)為,記,N. 若,則 ( )ABCD6設(shè)F為雙曲線C:(a0,b0)的右焦點,O為坐標原點,以O(shè)F為直徑的圓與圓x2+y2=a2交于P、Q兩點若|PQ|=|OF|,則C的離心率為ABC2D7已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為( )ABCD8已知雙曲線(,)的左、右頂點分別為,虛軸的兩個端點分別為,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為( )A8B16CD9已知集合,則=( )ABCD10已知三棱錐的外接球半徑為2,且球心為線段的中點,則三棱錐的體積的最大值為( )ABCD11總體由編號為01,02,.,39,40的4
3、0個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表(如表)第1行的第4列和第5列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為( )A23B21C35D3212已知底面為正方形的四棱錐,其一條側(cè)棱垂直于底面,那么該四棱錐的三視圖可能是下列各圖中的( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知半徑為的圓周上有一定點,在圓周上等可能地任意取一點與點連接,則所得弦長介于與之間的概率為_14某中學舉行了一次消防知識競賽,將參賽學生的成績進行整理后分為5組,繪制如圖所示的頻率分布直方圖,記圖中從左到右依次為第一、第二、第三、第四、第五組,已知第二組
4、的頻數(shù)是80,則成績在區(qū)間的學生人數(shù)是_15一個四面體的頂點在空間直角坐標系中的坐標分別是,則該四面體的外接球的體積為_16若四棱錐的側(cè)面內(nèi)有一動點Q,已知Q到底面的距離與Q到點P的距離之比為正常數(shù)k,且動點Q的軌跡是拋物線,則當二面角平面角的大小為時,k的值為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)設(shè)函數(shù),()討論的單調(diào)性;()時,若,求證:18(12分)選修4-5:不等式選講設(shè)函數(shù)f(x)=|x-a|,a0(1) 證明:f(x)+f(-1(2)若不等式f(x)+f(2x)12的解集非空,求19(12分)設(shè)的內(nèi)角的對邊分別為,已知.(1)求;(2)若為
5、銳角三角形,求的取值范圍.20(12分)已知橢圓的離心率為,且過點.(1)求橢圓C的標準方程;(2)點P是橢圓上異于短軸端點A,B的任意一點,過點P作軸于Q,線段PQ的中點為M.直線AM與直線交于點N,D為線段BN的中點,設(shè)O為坐標原點,試判斷以O(shè)D為直徑的圓與點M的位置關(guān)系.21(12分)已知函數(shù),.(1)判斷函數(shù)在區(qū)間上的零點的個數(shù);(2)記函數(shù)在區(qū)間上的兩個極值點分別為、,求證:.22(10分)已知等差數(shù)列的前n項和為,等比數(shù)列的前n項和為,且,.(1)求數(shù)列與的通項公式;(2)求數(shù)列的前n項和.2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分
6、。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【答案解析】由復數(shù)模的定義可得:,求解關(guān)于實數(shù)的方程可得:.本題選擇D選項.2、B【答案解析】利用等差數(shù)列的性質(zhì)求出的值,然后利用等差數(shù)列求和公式以及等差中項的性質(zhì)可求出的值.【題目詳解】由等差數(shù)列的性質(zhì)可得,.故選:B.【答案點睛】本題考查等差數(shù)列基本性質(zhì)的應(yīng)用,同時也考查了等差數(shù)列求和,考查計算能力,屬于基礎(chǔ)題.3、B【答案解析】試題分析:該幾何體上面是長方體,下面是四棱柱;長方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點:三視圖和幾何體的體積.4、C【答案解析】利用圓心到漸近線的距離等于半徑即可建立間的關(guān)系.【題目詳
7、解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.【答案點睛】本題考查雙曲線離心率的求法,求雙曲線離心率問題,關(guān)鍵是建立三者間的方程或不等關(guān)系,本題是一道基礎(chǔ)題.5、D【答案解析】通過計算,可得,最后計算可得結(jié)果.【題目詳解】由題可知:所以所以猜想可知:由所以所以故選:D【答案點睛】本題考查導數(shù)的計算以及不完全歸納法的應(yīng)用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.6、A【答案解析】準確畫圖,由圖形對稱性得出P點坐標,代入圓的方程得到c與a關(guān)系,可求雙曲線的離心率【題目詳解】設(shè)與軸交于點,由對稱性可知軸,又,為以為直徑的圓的半徑,為圓心,
8、又點在圓上,即,故選A【答案點睛】本題為圓錐曲線離心率的求解,難度適中,審題時注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運算繁瑣,準確率大大降低,雙曲線離心率問題是圓錐曲線中的重點問題,需強化練習,才能在解決此類問題時事半功倍,信手拈來7、C【答案解析】由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長為,利用正弦定理求出底面三角形外接圓的半徑,根據(jù)三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【題目詳解】由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長為,如圖:由底面邊長可知,
9、底面三角形的頂角為,由正弦定理可得,解得, 三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【答案點睛】本題考查了多面體的內(nèi)切球與外接球問題,由三視圖求幾何體的表面積,考查了學生的空間想象能力,屬于基礎(chǔ)題.8、D【答案解析】根據(jù)題意畫出幾何關(guān)系,由四邊形的內(nèi)切圓面積求得半徑,結(jié)合四邊形面積關(guān)系求得與等量關(guān)系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【題目詳解】根據(jù)題意,畫出幾何關(guān)系如下圖所示:設(shè)四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當且僅當時等號成立.故焦距
10、的最小值為.故選:D【答案點睛】本題考查了雙曲線的定義及其性質(zhì)的簡單應(yīng)用,圓錐曲線與基本不等式綜合應(yīng)用,屬于中檔題.9、C【答案解析】計算,再計算交集得到答案.【題目詳解】,故.故選:.【答案點睛】本題考查了交集運算,意在考查學生的計算能力.10、C【答案解析】由題可推斷出和都是直角三角形,設(shè)球心為,要使三棱錐的體積最大,則需滿足,結(jié)合幾何關(guān)系和圖形即可求解【題目詳解】先畫出圖形,由球心到各點距離相等可得,故是直角三角形,設(shè),則有,又,所以,當且僅當時,取最大值4,要使三棱錐體積最大,則需使高,此時,故選:C【答案點睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎(chǔ)題
11、11、B【答案解析】根據(jù)隨機數(shù)表法的抽樣方法,確定選出來的第5個個體的編號.【題目詳解】隨機數(shù)表第1行的第4列和第5列數(shù)字為4和6,所以從這兩個數(shù)字開始,由左向右依次選取兩個數(shù)字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,其中落在編號01,02,39,40內(nèi)的有:16,26,16,24,23,21,依次不重復的第5個編號為21.故選:B【答案點睛】本小題主要考查隨機數(shù)表法進行抽樣,屬于基礎(chǔ)題.12、C【答案解析】試題分析:通過對以下四個四棱錐的三視圖對照可知,只有選項C是符合要求的.考點:三視圖二、填空題:本題共4小題,
12、每小題5分,共20分。13、【答案解析】在圓上其他位置任取一點B,設(shè)圓半徑為R,其中滿足條件AB弦長介于與之間的弧長為 2R,則AB弦的長度大于等于半徑長度的概率P=;故答案為:14、30【答案解析】根據(jù)頻率直方圖中數(shù)據(jù)先計算樣本容量,再計算成績在80100分的頻率,繼而得解.【題目詳解】根據(jù)直方圖知第二組的頻率是,則樣本容量是,又成績在80100分的頻率是,則成績在區(qū)間的學生人數(shù)是故答案為:30【答案點睛】本題考查了頻率分布直方圖的應(yīng)用,考查了學生綜合分析,數(shù)據(jù)處理,數(shù)形運算的能力,屬于基礎(chǔ)題.15、【答案解析】將四面體補充為長寬高分別為的長方體,體對角線即為外接球的直徑,從而得解.【題目詳
13、解】采用補體法,由空間點坐標可知,該四面體的四個頂點在一個長方體上,該長方體的長寬高分別為,長方體的外接球即為該四面體的外接球,外接球的直徑即為長方體的體對角線,所以球半徑為,體積為.【答案點睛】本題主要考查了四面體外接球的常用求法:補體法,通過補體得到長方體的外接球從而得解,屬于基礎(chǔ)題.16、【答案解析】二面角平面角為,點Q到底面的距離為,點Q到定直線得距離為d,則.再由點Q到底面的距離與到點P的距離之比為正常數(shù)k,可得,由此可得,則由可求k值.【題目詳解】解:如圖,設(shè)二面角平面角為,點Q到底面的距離為,點Q到定直線的距離為d,則,即.點Q到底面的距離與到點P的距離之比為正常數(shù)k,則,動點Q
14、的軌跡是拋物線,即則.二面角的平面角的余弦值為解得:().故答案為:.【答案點睛】本題考查了四棱錐的結(jié)構(gòu)特征,由四棱錐的側(cè)面與底面的夾角求參數(shù)值,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【答案解析】(1)首先對函數(shù)求導,再根據(jù)參數(shù)的取值,討論的正負,即可求出關(guān)于的單調(diào)性即可;(2)首先通過構(gòu)造新函數(shù),討論新函數(shù)的單調(diào)性,根據(jù)新函數(shù)的單調(diào)性證明.【題目詳解】(1),令,則,令得,當時,則在單調(diào)遞減,當時,則在單調(diào)遞增,所以,當時,即,則在上單調(diào)遞增,當時,易知當時,當時,由零點存在性定理知,不妨設(shè),使得,當時,即,當時,
15、即,當時,即,所以在和上單調(diào)遞增,在單調(diào)遞減;(2)證明:構(gòu)造函數(shù),整理得,(當時等號成立),所以在上單調(diào)遞增,則,所以在上單調(diào)遞增,這里不妨設(shè),欲證,即證由(1)知時,在上單調(diào)遞增,則需證,由已知有,只需證,即證,由在上單調(diào)遞增,且時,有,故成立,從而得證.【答案點睛】本題主要考查了導數(shù)含參分類討論單調(diào)性,借助構(gòu)造函數(shù)和單調(diào)性證明不等式,屬于難題.18、 (1)見解析.(1) (-1,0).【答案解析】試題分析:(1)直接計算f(x)+f(-1(1)f(x)+f(2x)=|x-a|+|2x-a|,分區(qū)間討論去絕對值符號分別解不等式即可.試題解析: (1)證明:函數(shù)f(x)=|xa|,a2,則
16、f(x)+f()=|xa|+|a|=|xa|+|+a|(xa)+(+a)|=|x+|=|x|+1=1(1)f(x)+f(1x)=|xa|+|1xa|,a2當xa時,f(x)=ax+a1x=1a3x,則f(x)a;當ax時,f(x)=xa+a1x=x,則f(x)a;當x時,f(x)=xa+1xa=3x1a,則f(x)則f(x)的值域為,+).不等式f(x)+f(1x)的解集非空,即為,解得,a1,由于a2,則a的取值范圍是(-1,0)考點:1.含絕對值不等式的證明與解法.1.基本不等式.19、(1)(2)【答案解析】(1)利用正弦定理化簡已知條件,由此求得的值,進而求得的大小.(2)利用正弦定理
17、和兩角差的正弦公式,求得的表達式,進而求得的取值范圍.【題目詳解】(1)由題設(shè)知,即,所以,即,又所以.(2)由題設(shè)知,即,又為銳角三角形,所以,即所以,即,所以的取值范圍是.【答案點睛】本小題主要考查利用正弦定理解三角形,考查利用角的范圍,求邊的比值的取值范圍,屬于中檔題.20、(1)(2)點在以為直徑的圓上【答案解析】(1)根據(jù)題意列出關(guān)于,的方程組,解出,的值,即可得到橢圓的標準方程;(2)設(shè)點,則,求出直線的方程,進而求出點的坐標,再利用中點坐標公式得到點的坐標,下面結(jié)合點在橢圓上證出,所以點在以為直徑的圓上【題目詳解】(1)由題意可知,解得,橢圓的標準方程為:.(2)設(shè)點,則,直線的
18、斜率為,直線的方程為:,令得,點的坐標為,點的坐標為,又點,在橢圓上,點在以為直徑的圓上【答案點睛】本題主要考查了橢圓方程,考查了中點坐標公式,以及平面向量的基本知識,屬于中檔題21、(1);(2)見解析.【答案解析】(1)利用導數(shù)分析函數(shù)在區(qū)間上的單調(diào)性與極值,結(jié)合零點存在定理可得出結(jié)論;(2)設(shè)函數(shù)的極大值點和極小值點分別為、,由(1)知,且滿足,于是得出,由得,利用正切函數(shù)的單調(diào)性推導出,再利用正弦函數(shù)的單調(diào)性可得出結(jié)論.【題目詳解】(1),當時,則函數(shù)在上單調(diào)遞增;當時,則函數(shù)在上單調(diào)遞減;當時,則函數(shù)在上單調(diào)遞增.,.所以,函數(shù)在與不存在零點,在區(qū)間和上各存在一個零點.綜上所述,函數(shù)在區(qū)間上的零點的個數(shù)為;(2),.由(1)得,在區(qū)間與上存在零點,所以,函數(shù)在區(qū)間與上各存在一個極值點、,且,且滿足即,又,即,由在上單調(diào)遞增,得,再由在上單調(diào)遞減,得,即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 美容院二零二五年度美容儀器租賃及維修服務(wù)合同2篇
- 2025年新型銅箔生產(chǎn)線自動化升級改造合同范本3篇
- 二零二五年度城市居民住房按揭貸款合同范本8篇
- 二零二五年度空運貨物出口運輸及保險服務(wù)合同2篇
- 二零二五年度文化產(chǎn)業(yè)創(chuàng)新發(fā)展貸款合同模板4篇
- 2025年度智慧城市基礎(chǔ)設(shè)施搭建委托協(xié)議4篇
- 2025年度個人二手車買賣合同范本標準版4篇
- 顫音音響發(fā)生器課程設(shè)計
- 2024碎石加工廠產(chǎn)品質(zhì)量追溯體系建立合同范本3篇
- 單元四吊頂與隔墻工程
- 第22單元(二次函數(shù))-單元測試卷(2)-2024-2025學年數(shù)學人教版九年級上冊(含答案解析)
- 安全常識課件
- 河北省石家莊市2023-2024學年高一上學期期末聯(lián)考化學試題(含答案)
- 小王子-英文原版
- 新版中國食物成分表
- 2024年山東省青島市中考生物試題(含答案)
- 河道綜合治理工程技術(shù)投標文件
- 專題24 短文填空 選詞填空 2024年中考英語真題分類匯編
- 再生障礙性貧血課件
- 產(chǎn)后抑郁癥的護理查房
- 2024年江蘇護理職業(yè)學院高職單招(英語/數(shù)學/語文)筆試歷年參考題庫含答案解析
評論
0/150
提交評論