2022-2023學年遼寧省鐵嶺市某學校數(shù)學單招試卷(含答案)_第1頁
2022-2023學年遼寧省鐵嶺市某學校數(shù)學單招試卷(含答案)_第2頁
2022-2023學年遼寧省鐵嶺市某學校數(shù)學單招試卷(含答案)_第3頁
2022-2023學年遼寧省鐵嶺市某學校數(shù)學單招試卷(含答案)_第4頁
2022-2023學年遼寧省鐵嶺市某學校數(shù)學單招試卷(含答案)_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年遼寧省鐵嶺市某學校數(shù)學單招試卷(含答案)學校:________班級:________姓名:________考號:________

一、單選題(10題)1.已知過點A(0,-1),點B在直線x-y+1=0上,直線AB的垂直平分線x+2y-3=0,則點B的坐標是()A.(-2,-3)B.(2,3)C.(2,1)D.(-2,1)

2.下列四組函數(shù)中表示同一函數(shù)的是()A.y=x與y=

B.y=2lnx與y=lnx2

C.y=sinx與y=cos()

D.y=cos(2π-x)與y=sin(π-x)

3.已知函數(shù)f(x)=sin(2x+3π/2)(x∈R),下面結論錯誤的是()A.函數(shù)f(x)的最小正周期為π

B.函數(shù)f(x)是偶函數(shù)

C.函數(shù)f(x)是圖象關于直線x=π/4對稱

D.函數(shù)f(x)在區(qū)間[0,π/2]上是增函數(shù)

4.A.B.C.

5.某學校為了了解三年級、六年級、九年級這三個年級之間的學生視力是否存在顯著差異,擬從這三個年級中按人數(shù)比例抽取部分學生進行調查,則最合理的抽樣方法是()A.抽簽法B.系統(tǒng)抽樣法C.分層抽樣法D.隨機數(shù)法

6.以點(2,0)為圓心,4為半徑的圓的方程為()A.(x-2)2+y2=16

B.(x-2)2+y2=4

C.(x+2)2+y2=46

D.(x+2)2+y2=4

7.A.(1,2)B.(-1,2)C.(-1,-2)D.(1,-2)

8.設a,b為實數(shù),則a2=b2的充要條件是()A.a=bB.a=-bC.a2=b2

D.|a|=|b|

9.已知函數(shù)f(x)=x2-x+1,則f(1)的值等于()A.-3B.-1C.1D.2

10.△ABC的內角A,B,C的對邊分別為a,b,c已知a=,c=2,cosA=2/3,則b=()A.

B.

C.2

D.3

二、填空題(10題)11.如圖所示,某人向圓內投鏢,如果他每次都投入圓內,那么他投中正方形區(qū)域的概率為____。

12.

13.等比數(shù)列中,a2=3,a6=6,則a4=_____.

14.

15.已知點A(5,-3)B(1,5),則點P的坐標是_____.

16.

17.

18.某田徑隊有男運動員30人,女運動員10人.用分層抽樣的方法從中抽出一個容量為20的樣本,則抽出的女運動員有______人.

19.已知△ABC中,∠A,∠B,∠C所對邊為a,b,c,C=30°,a=c=2.則b=____.

20.有一長為16m的籬笆要圍成一個矩形場地,則矩形場地的最大面積是________m2.

三、計算題(5題)21.甲、乙兩人進行投籃訓練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.

22.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。

23.近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應的垃圾箱,為調查居民生活垃圾的正確分類投放情況,現(xiàn)隨機抽取了該市四類垃圾箱總計100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):(1)試估計“可回收垃圾”投放正確的概率;(2)試估計生活垃圾投放錯誤的概率。

24.己知直線l與直線y=2x+5平行,且直線l過點(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.

25.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

四、證明題(5題)26.若x∈(0,1),求證:log3X3<log3X<X3.

27.長、寬、高分別為3,4,5的長方體,沿相鄰面對角線截取一個三棱錐(如圖).求證:剩下幾何體的體積為三棱錐體積的5倍.

28.己知x∈(1,10),A=lg2x,B=lgx2,證明:A<B.

29.△ABC的三邊分別為a,b,c,為且,求證∠C=

30.如圖所示,四棱錐中P-ABCD,底面ABCD為矩形,點E為PB的中點.求證:PD//平面ACE.

五、簡答題(5題)31.已知的值

32.設函數(shù)是奇函數(shù)(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)當x<0時,判斷f(x)的單調性并加以證明.

33.在拋物線y2=12x上有一弦(兩端點在拋物線上的線段)被點M(1,2)平分.(1)求這條弦所在的直線方程;(2)求這條弦的長度.

34.已知橢圓和直線,求當m取何值時,橢圓與直線分別相交、相切、相離。

35.證明:函數(shù)是奇函數(shù)

六、綜合題(5題)36.

(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標軸相切的圓的標準方程.

37.

38.己知橢圓與拋物線y2=4x有共同的焦點F2,過橢圓的左焦點F1作傾斜角為的直線,與橢圓相交于M、N兩點.求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.

39.在△ABC中,角A,B,C的對邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

40.己知點A(0,2),5(-2,-2).(1)求過A,B兩點的直線l的方程;(2)己知點A在橢圓C:上,且(1)中的直線l過橢圓C的左焦點。求橢圓C的標準方程.

參考答案

1.B由于B在直線x-y+1=0上,所以可以設B的坐標為(x,x+1),AB的斜率為,垂直平分線的斜率為,所以有,因此點B的坐標為(2,3)。

2.Ccos(3π/2+x)=cos(π/2-x)=sinx,所以選項C表示同一函數(shù)。

3.C三角函數(shù)的性質.f(x)=sin(2x+3π/2)=-cos2x,故其最小正周期為π,故A正確;易知函數(shù)f(x)是偶函數(shù),B正確;由函數(shù)f(x)=-cos2x的圖象可知,函數(shù)f(x)的圖象關于直線x=π/4不對稱,C錯誤;由函數(shù)f(x)的圖象易知,函數(shù)f(x)在[0,π/2]上是增函數(shù),D正確,

4.A

5.C為了解三年級、六年級、九年級這三個年級之間的學生視力是否存在顯著差異,這種方式具有代表性,比較合理的抽樣方法是分層抽樣。

6.A圓的方程.當圓心坐標為(x0,y0)時,圓的-般方程為(x-x0)2+(y-y0)2=r2.

7.D

8.D

9.C函數(shù)值的計算f(1)=1-1+1=1.

10.D解三角形的余弦定理.由余弦定理,得5=b2+22-2×b×2×2/3,解得b=3(b=1/3舍去),

11.2/π。

12.

13.

,由等比數(shù)列性質可得a2/a4=a4/a6,a42=a2a6=18,所以a4=.

14.外心

15.(2,3),設P(x,y),AP=(x-5,y+3),AB=(-4,8),所以x-5=(-4)*(3/4)=-3;得x=2;y+3=8*(3/4)=6;得y=3;所以P(2,3).

16.π/2

17.

18.5分層抽樣方法.因為男運動員30人,女運動員10人,所以抽出的女運動員有10f(10+30)×20=1/4×20=5人.

19.三角形的余弦定理.a=c=2,所以A=C=30°,B=120°,所以b2=a2+c2-2accosB=12,所以b=2

20.16.將實際問題求最值的問題轉化為二次函數(shù)在某個區(qū)間上的最值問題.設矩形的長為xm,則寬為:16-2x/2=8-x(m)∴S矩形=x(8-x)=-x2+8x=-(x-4)2+16≤16.

21.

22.

23.

24.解:(1)設所求直線l的方程為:2x-y+c=0∵直線l過點(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當x=0時,y=-4∴直線l在y軸上的截距為-4

25.

26.

27.證明:根據(jù)該幾何體的特征,可知所剩的幾何體的體積為長方體的體積減去所截的三棱錐的體積,即

28.證明:考慮對數(shù)函數(shù)y=lgx的限制知

:當x∈(1,10)時,y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴l(xiāng)gx-2<0A-B<0∴A<B

29.

30.

∴PD//平面ACE.

31.

∴∴則

32.

∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴

∴得0<b<∵b∈Z∴b=1∴(2)設-1<<<0∵

若時

故當X<-1時為增函數(shù);當-1≤X<0為減函數(shù)

33.∵(1)這條弦與拋物線兩交點

34.∵∴當△>0時,即,相交當△=0時,即,相切當△<0時,即,相離

35.證明:∵∴則,此函數(shù)為奇函數(shù)

36.解:(1)斜率k=5/3,設直線l的方程5x-3y+m=0,直線l經(jīng)過點(0,-8/3),所以m=8,直線l的方程為5x-3y-8=0。(2)設圓心為C(a,b),圓與兩坐標軸相切,故a=±b又圓心在直線5x-3y-8=0上,將a=b或a=-b代入直線方程得:a=4或a=1當a=4時,b

=4,此時r=4,圓的方程為(x-4)2

+(y-4)2=16當a=1時,b

=-1,此時r=1,圓的方程為(x-1)2

+(y+1)2=1

37.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論