




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列函數(shù)中,圖象關于軸對稱的為()A. B.,C. D.2.已知集合,則集合的非空子集個數(shù)是()A.2 B.3 C.7 D.83.已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為()A. B. C. D.4.若命題p:從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內(nèi)任取一點M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q5.已知等差數(shù)列的公差為,前項和為,,,為某三角形的三邊長,且該三角形有一個內(nèi)角為,若對任意的恒成立,則實數(shù)().A.6 B.5 C.4 D.36.若,則下列關系式正確的個數(shù)是()①②③④A.1 B.2 C.3 D.47.如圖所示,矩形的對角線相交于點,為的中點,若,則等于().A. B. C. D.8.已知復數(shù),則的虛部為()A.-1 B. C.1 D.9.設等差數(shù)列的前n項和為,且,,則()A.9 B.12 C. D.10.已知函數(shù)是上的減函數(shù),當最小時,若函數(shù)恰有兩個零點,則實數(shù)的取值范圍是()A. B.C. D.11.己知函數(shù)若函數(shù)的圖象上關于原點對稱的點有2對,則實數(shù)的取值范圍是()A. B. C. D.12.在中,,,,為的外心,若,,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的離心率為_________.14.已知F為拋物線C:x2=8y的焦點,P為C上一點,M(﹣4,3),則△PMF周長的最小值是_____.15.戊戌年結束,己亥年伊始,小康,小梁,小譚,小楊,小劉,小林六人分成四組,其中兩個組各2人,另兩個組各1人,分別奔赴四所不同的學校參加演講,則不同的分配方案有_________種(用數(shù)字作答),16.曲線f(x)=(x2+x)lnx在點(1,f(1))處的切線方程為____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當時,解不等式;(2)設不等式的解集為,若,求實數(shù)的取值范圍.18.(12分)橢圓的左、右焦點分別為,橢圓上兩動點使得四邊形為平行四邊形,且平行四邊形的周長和最大面積分別為8和.(1)求橢圓的標準方程;(2)設直線與橢圓的另一交點為,當點在以線段為直徑的圓上時,求直線的方程.19.(12分)P是圓上的動點,P點在x軸上的射影是D,點M滿足.(1)求動點M的軌跡C的方程,并說明軌跡是什么圖形;(2)過點的直線l與動點M的軌跡C交于不同的兩點A,B,求以OA,OB為鄰邊的平行四邊形OAEB的頂點E的軌跡方程.20.(12分)如圖在四邊形中,,,為中點,.(1)求;(2)若,求面積的最大值.21.(12分)已知拋物線Γ:y2=2px(p>0)的焦點為F,P是拋物線Γ上一點,且在第一象限,滿足(2,2)(1)求拋物線Γ的方程;(2)已知經(jīng)過點A(3,﹣2)的直線交拋物線Γ于M,N兩點,經(jīng)過定點B(3,﹣6)和M的直線與拋物線Γ交于另一點L,問直線NL是否恒過定點,如果過定點,求出該定點,否則說明理由.22.(10分)已知向量,.(1)求的最小正周期;(2)若的內(nèi)角的對邊分別為,且,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
圖象關于軸對稱的函數(shù)為偶函數(shù),用偶函數(shù)的定義及性質對選項進行判斷可解.【詳解】圖象關于軸對稱的函數(shù)為偶函數(shù);A中,,,故為奇函數(shù);B中,的定義域為,不關于原點對稱,故為非奇非偶函數(shù);C中,由正弦函數(shù)性質可知,為奇函數(shù);D中,且,,故為偶函數(shù).故選:D.【點睛】本題考查判斷函數(shù)奇偶性.判斷函數(shù)奇偶性的兩種方法:(1)定義法:對于函數(shù)的定義域內(nèi)任意一個都有,則函數(shù)是奇函數(shù);都有,則函數(shù)是偶函數(shù)(2)圖象法:函數(shù)是奇(偶)函數(shù)函數(shù)圖象關于原點(軸)對稱.2、C【解析】
先確定集合中元素,可得非空子集個數(shù).【詳解】由題意,共3個元素,其子集個數(shù)為,非空子集有7個.故選:C.【點睛】本題考查集合的概念,考查子集的概念,含有個元素的集合其子集個數(shù)為,非空子集有個.3、D【解析】
先根據(jù)已知條件求解出的通項公式,然后根據(jù)的單調性以及得到滿足的不等關系,由此求解出的取值范圍.【詳解】由已知得,則.因為,數(shù)列是單調遞增數(shù)列,所以,則,化簡得,所以.故選:D.【點睛】本題考查數(shù)列通項公式求解以及根據(jù)數(shù)列單調性求解參數(shù)范圍,難度一般.已知數(shù)列單調性,可根據(jù)之間的大小關系分析問題.4、B【解析】因為從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯誤,則?p是正確的;在邊長為4的正方形ABCD內(nèi)任取一點M點睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構成的復合命題的真假的判定有機地整合在一起,旨在考查命題真假的判定及古典概型的特征與計算公式的運用、幾何概型的特征與計算公式的運用等知識與方法的綜合運用,以及分析問題解決問題的能力。5、C【解析】
若對任意的恒成立,則為的最大值,所以由已知,只需求出取得最大值時的n即可.【詳解】由已知,,又三角形有一個內(nèi)角為,所以,,解得或(舍),故,當時,取得最大值,所以.故選:C.【點睛】本題考查等差數(shù)列前n項和的最值問題,考查學生的計算能力,是一道基礎題.6、D【解析】
a,b可看成是與和交點的橫坐標,畫出圖象,數(shù)形結合處理.【詳解】令,,作出圖象如圖,由,的圖象可知,,,②正確;,,有,①正確;,,有,③正確;,,有,④正確.故選:D.【點睛】本題考查利用函數(shù)圖象比較大小,考查學生數(shù)形結合的思想,是一道中檔題.7、A【解析】
由平面向量基本定理,化簡得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡,所以,即,故選A.【點睛】本題主要考查了平面向量基本定理的應用,其中解答熟記平面向量的基本定理,化簡得到是解答的關鍵,著重考查了運算與求解能力,數(shù)基礎題.8、A【解析】
分子分母同乘分母的共軛復數(shù)即可.【詳解】,故的虛部為.故選:A.【點睛】本題考查復數(shù)的除法運算,考查學生運算能力,是一道容易題.9、A【解析】
由,可得以及,而,代入即可得到答案.【詳解】設公差為d,則解得,所以.故選:A.【點睛】本題考查等差數(shù)列基本量的計算,考查學生運算求解能力,是一道基礎題.10、A【解析】
首先根據(jù)為上的減函數(shù),列出不等式組,求得,所以當最小時,,之后將函數(shù)零點個數(shù)轉化為函數(shù)圖象與直線交點的個數(shù)問題,畫出圖形,數(shù)形結合得到結果.【詳解】由于為上的減函數(shù),則有,可得,所以當最小時,,函數(shù)恰有兩個零點等價于方程有兩個實根,等價于函數(shù)與的圖像有兩個交點.畫出函數(shù)的簡圖如下,而函數(shù)恒過定點,數(shù)形結合可得的取值范圍為.故選:A.【點睛】該題考查的是有關函數(shù)的問題,涉及到的知識點有分段函數(shù)在定義域上單調減求參數(shù)的取值范圍,根據(jù)函數(shù)零點個數(shù)求參數(shù)的取值范圍,數(shù)形結合思想的應用,屬于中檔題目.11、B【解析】
考慮當時,有兩個不同的實數(shù)解,令,則有兩個不同的零點,利用導數(shù)和零點存在定理可得實數(shù)的取值范圍.【詳解】因為的圖象上關于原點對稱的點有2對,所以時,有兩個不同的實數(shù)解.令,則在有兩個不同的零點.又,當時,,故在上為增函數(shù),在上至多一個零點,舍.當時,若,則,在上為增函數(shù);若,則,在上為減函數(shù);故,因為有兩個不同的零點,所以,解得.又當時,且,故在上存在一個零點.又,其中.令,則,當時,,故為減函數(shù),所以即.因為,所以在上也存在一個零點.綜上,當時,有兩個不同的零點.故選:B.【點睛】本題考查函數(shù)的零點,一般地,較為復雜的函數(shù)的零點,必須先利用導數(shù)研究函數(shù)的單調性,再結合零點存在定理說明零點的存在性,本題屬于難題.12、B【解析】
首先根據(jù)題中條件和三角形中幾何關系求出,,即可求出的值.【詳解】如圖所示過做三角形三邊的垂線,垂足分別為,,,過分別做,的平行線,,由題知,則外接圓半徑,因為,所以,又因為,所以,,由題可知,所以,,所以.故選:D.【點睛】本題主要考查了三角形外心的性質,正弦定理,平面向量分解定理,屬于一般題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】14、5【解析】
△PMF的周長最小,即求最小,過做拋物線準線的垂線,垂足為,轉化為求最小,數(shù)形結合即可求解.【詳解】如圖,F(xiàn)為拋物線C:x2=8y的焦點,P為C上一點,M(﹣4,3),拋物線C:x2=8y的焦點為F(0,2),準線方程為y=﹣2.過作準線的垂線,垂足為,則有,當且僅當三點共線時,等號成立,所以△PMF的周長最小值為55.故答案為:5.【點睛】本題考查拋物線定義的應用,考查數(shù)形結合與數(shù)學轉化思想方法,屬于中檔題.15、1080【解析】
按照先分組,再分配的分式,先將六人分成四組,其中兩個組各2人,另兩個組各1人有種,再分別奔赴四所不同的學校參加演講有種,然后用分步計數(shù)原理求解.【詳解】將六人分成四組,其中兩個組各2人,另兩個組各1人有種,再分別奔赴四所不同的學校參加演講有種,則不同的分配方案有種.故答案為:1080【點睛】本題主要考查分組分配問題,還考查了理解辨析的能力,屬于中檔題.16、【解析】
求函數(shù)的導數(shù),利用導數(shù)的幾何意義即可求出切線方程.【詳解】解:∵,
∴,
則,
又,即切點坐標為(1,0),
則函數(shù)在點(1,f(1))處的切線方程為,
即,
故答案為:.【點睛】本題主要考查導數(shù)的幾何意義,根據(jù)導數(shù)和切線斜率之間的關系是解決本題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或;(2)【解析】
(1)使用零點分段法,討論分段的取值范圍,然后取它們的并集,可得結果.(2)利用等價轉化的思想,可得不等式在恒成立,然后解出解集,根據(jù)集合間的包含關系,可得結果.【詳解】(1)當時,原不等式可化為.①當時,則,所以;②當時,則,所以;⑧當時,則,所以.綜上所述:當時,不等式的解集為或.(2)由,則,由題可知:在恒成立,所以,即,即,所以故所求實數(shù)的取值范圍是.【點睛】本題考查零點分段求解含絕對值不等式,熟練使用分類討論的方法,以及知識的交叉應用,同時掌握等價轉化的思想,屬中檔題.18、(1)(2)或【解析】
(1)根據(jù)題意計算得到,,得到橢圓方程.(2)設,聯(lián)立方程得到,根據(jù),計算得到答案.【詳解】(1)由平行四邊形的周長為8,可知,即.由平行四邊形的最大面積為,可知,又,解得.所以橢圓方程為.(2)注意到直線的斜率不為0,且過定點.設,由消得,所以,因為,所以.因為點在以線段為直徑的圓上,所以,即,所以直線的方程或.【點睛】本題考查了橢圓方程,根據(jù)直線和橢圓的位置關系求直線,將題目轉化為是解題的關鍵.19、(1)點M的軌跡C的方程為,軌跡C是以,為焦點,長軸長為4的橢圓(2)【解析】
(1)設,根據(jù)可求得,代入圓的方程可得所求軌跡方程;根據(jù)軌跡方程可知軌跡是以,為焦點,長軸長為的橢圓;(2)設,與橢圓方程聯(lián)立,利用求得;利用韋達定理表示出與,根據(jù)平行四邊形和向量的坐標運算求得,消去后得到軌跡方程;根據(jù)求得的取值范圍,進而得到最終結果.【詳解】(1)設,則由知:點在圓上點的軌跡的方程為:軌跡是以,為焦點,長軸長為的橢圓(2)設,由題意知的斜率存在設,代入得:則,解得:設,,則四邊形為平行四邊形又∴,消去得:頂點的軌跡方程為【點睛】本題考查圓錐曲線中的軌跡方程的求解問題,關鍵是能夠利用已知中所給的等量關系建立起動點橫縱坐標滿足的關系式,進而通過化簡整理得到結果;易錯點是求得軌跡方程后,忽略的取值范圍.20、(1)1;(2)【解析】
(1),在和中分別運用余弦定理可表示出,運用算兩次的思想即可求得,進而求出;(2)在中,根據(jù)余弦定理和基本不等式,可求得,再由三角形的面積公式以及正弦函數(shù)的有界性,求出的面積的最大值.【詳解】(1)由題設,則在和中由余弦定理得:,即解得,∴(2)在中由余弦定理得,即,∴所以面積的最大值為,此時.【點睛】本題主要考查余弦定理在解三角形中的應用,以及三角形面積公式的應用,意在考查學生的數(shù)學運算能力,屬于中檔題.21、(1)y2=4x;;(2)直線NL恒過定點(﹣3,0),理由見解析.【解析】
(1)根據(jù)拋物線的方程,求得焦點F(,0),利用(2,2),表示點P的坐標,再代入拋物線方程求解.(2)設M(x0,y0),N(x1,y1),L(x2,y2),表示出MN的方程y和ML的方程y,因為A(3,﹣2),B(3,﹣6)在這兩條直線上,分別代入兩直線的方程可得y1y2=12,然后表示直線NL的方程為:y﹣y1(x),代入化簡求解.【詳解】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 土方卸地合同范本
- 知識產(chǎn)權侵權行為的法律后果與處罰措施
- 買車詳細合同范本
- 醫(yī)藥銷售用工合同范本
- 鐵路行業(yè)供貨合同范本
- 食品袋合同范本
- 企業(yè)員工培訓課件:通過案例分析激發(fā)員工創(chuàng)新能力
- 石家莊市2025年度勞動合同簽訂與備案流程
- 二零二五年度禽蛋類產(chǎn)品養(yǎng)殖技術支持與采購合同
- 二零二五年度美容院技術共享入股協(xié)議書
- 《汽車專業(yè)英語》2024年課程標準(含課程思政設計)
- 部編四年級道德與法治下冊全冊教案(含反思)
- 煙草栽培(二級)鑒定理論考試復習題庫-上(單選題匯總)
- 《三位數(shù)的加減法》單元分析
- 鋼管樁的計算公式
- 醫(yī)療質量管理與控制手冊
- 美的職位與職銜管理手冊
- 醫(yī)學裝備科醫(yī)院設備績效管理修訂方案
- 散文課堂教學評價重點標準
- 橋梁鋼筋加工安裝
- 動物生物化學(全套577PPT課件)
評論
0/150
提交評論