2023屆嘉興市秀洲區(qū)數(shù)學(xué)九年級上冊期末復(fù)習(xí)檢測模擬試題含解析_第1頁
2023屆嘉興市秀洲區(qū)數(shù)學(xué)九年級上冊期末復(fù)習(xí)檢測模擬試題含解析_第2頁
2023屆嘉興市秀洲區(qū)數(shù)學(xué)九年級上冊期末復(fù)習(xí)檢測模擬試題含解析_第3頁
2023屆嘉興市秀洲區(qū)數(shù)學(xué)九年級上冊期末復(fù)習(xí)檢測模擬試題含解析_第4頁
2023屆嘉興市秀洲區(qū)數(shù)學(xué)九年級上冊期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上,則tan∠ABC的值為()A. B. C. D.2.如圖,在△ABC中,點D、E、F分別在邊AB、AC、BC上,且∠AED=∠B,再將下列四個選項中的一個作為條件,不一定能使得△ADE和△BDF相似的是()A. B. C. D.3.如圖,在?ABCD中,E是AB的中點,EC交BD于點F,則△BEF與△DCB的面積比為()A. B. C. D.4.公元三世紀(jì),我國漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時給出的“趙爽弦圖”如圖所示,它是由四個全等的直角三角形與中間的小正方形拼成的一個大正方形.如果大正方形的面積是125,小正方形面積是25,則()A. B. C. D.5.的相反數(shù)是()A. B. C. D.36.某班有40人,一次體能測試后,老師對測試成績進行了統(tǒng)計.由于小亮沒有參加本次集體測試因此計算其他39人的平均分為90分,方差s2=1.后來小亮進行了補測,成績?yōu)?0分,關(guān)于該班40人的測試成績,下列說法正確的是()A.平均分不變,方差變大 B.平均分不變,方差變小C.平均分和方差都不變 D.平均分和方差都改變7.圓心角為140°的扇形的半徑為3cm,則這個扇形的面積是()cm1.A.π B.3π C.9π D.6π8.下列方程中,是關(guān)于的一元二次方程的是()A. B. C. D.9.在平面直角坐標(biāo)系中,以原點為位似中心,位似比為:,將縮小,若點坐標(biāo),,則點對應(yīng)點坐標(biāo)為()A., B. C.或, D.,或,10.已知Rt△ABC,∠ACB=90o,BC=10,AC=20,點D為斜邊中點,連接CD,將△BCD沿CD翻折得△B’CD,B’D交AC于點E,則的值為()A. B. C. D.11.某樓盤的商品房原價12000元/,國慶期間進行促銷活動,經(jīng)過連續(xù)兩次降價后,現(xiàn)價9720元/,求平均每次降價的百分率。設(shè)平均每次降價的百分率為,可列方程為()A. B.C. D.12.如圖,⊙O的弦AB垂直平分半徑OC,若AB=,則⊙O的半徑為()A. B.2 C. D.二、填空題(每題4分,共24分)13.函數(shù)y=中的自變量的取值范圍是____________.14.如圖,點P是反比例函數(shù)y=(k≠0)的圖象上任意一點,過點P作PM⊥x軸,垂足為M.若△POM的面積等于2,則k的值等于_15.如圖,小明從路燈下A處,向前走了5米到達D處,行走過程中,他的影子將會(只填序號)________.①越來越長,②越來越短,③長度不變.在D處發(fā)現(xiàn)自己在地面上的影子長DE是2米,如果小明的身高為1.7米,那么路燈離地面的高度AB是________米.16.一元二次方程(x+1)(x-3)=2x-5根的情況_______.(表述正確即可)17.如圖,圓錐的母線長為5,底面圓直徑CD與高AB相等,則圓錐的側(cè)面積為_____.18.如圖,直線與雙曲線(k≠0)相交于A(﹣1,)、B兩點,在y軸上找一點P,當(dāng)PA+PB的值最小時,點P的坐標(biāo)為_________.三、解答題(共78分)19.(8分)在平面直角坐標(biāo)系xOy中,拋物線y=x2﹣2mx+m2﹣1.(1)求拋物線頂點C的坐標(biāo)(用含m的代數(shù)式表示);(2)已知點A(0,3),B(2,3),若該拋物線與線段AB有公共點,結(jié)合函數(shù)圖象,求出m的取值范圍.20.(8分)如圖,點A,P,B,C是⊙O上的四個點,∠DAP=∠PBA.(1)求證:AD是⊙O的切線;(2)若∠APC=∠BPC=60°,試探究線段PA,PB,PC之間的數(shù)量關(guān)系,并證明你的結(jié)論;(3)在第(2)問的條件下,若AD=2,PD=1,求線段AC的長.21.(8分)如圖,拋物線與x軸相交于兩點(點在點的左側(cè)),與軸相交于點.為拋物線上一點,橫坐標(biāo)為,且.⑴求此拋物線的解析式;⑵當(dāng)點位于軸下方時,求面積的最大值;⑶設(shè)此拋物線在點與點之間部分(含點和點)最高點與最低點的縱坐標(biāo)之差為.①求關(guān)于的函數(shù)解析式,并寫出自變量的取值范圍;②當(dāng)時,直接寫出的面積.22.(10分)如圖,在矩形ABCD中,E是BC上一點,連接AE,將矩形沿AE翻折,使點B落在CD邊F處,連接AF,在AF上取一點O,以點O為圓心,OF為半徑作⊙O與AD相切于點P.AB=6,BC=(1)求證:F是DC的中點.(2)求證:AE=4CE.(3)求圖中陰影部分的面積.23.(10分)如圖,在中,,,點在的內(nèi)部,經(jīng)過,兩點,交于點,連接并延長交于點,以,為鄰邊作.(1)判斷與的位置關(guān)系,并說明理由.(2)若點是的中點,的半徑為2,求的長.24.(10分)如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,拋物線與x軸的另一交點為B.(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;(2)設(shè)點P為拋物線的對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標(biāo).25.(12分)某圖書館2015年年底有圖書10萬冊,預(yù)計2017年年底有圖書14.4萬冊.求這兩年圖書冊數(shù)的年平均增長率.26.如圖所示,陽光透過長方形玻璃投射到地面上,地面上出現(xiàn)一個明亮的平行四邊形,楊陽用量角器量出了一條對角線與一邊垂直,用直尺量出平行四邊形的一組鄰邊的長分別是30cm,50cm,請你幫助楊陽計算出該平行四邊形的面積.

參考答案一、選擇題(每題4分,共48分)1、D【解析】如圖,∠ABC所在的直角三角形的對邊AD=3,鄰邊BD=4,所以,tan∠ABC=.故選D.2、C【解析】試題解析:C.兩組邊對應(yīng)成比例及其夾角相等,兩三角形相似.必須是夾角,但是不一定等于故選C.點睛:三角形相似的判定方法:兩組角對應(yīng)相等,兩個三角形相似.兩組邊對應(yīng)成比例及其夾角相等,兩三角形相似.三邊的比相等,兩三角形相似.3、D【分析】根據(jù)平行四邊形的性質(zhì)得出AB=CD,AB∥CD,根據(jù)相似三角形的判定得出△BEF∽△DCF,根據(jù)相似三角形的性質(zhì)和三角形面積公式求出即可.【詳解】解:∵四邊形ABCD是平行四邊形,E為AB的中點,∴AB=DC=2BE,AB∥CD,∴△BEF∽△DCF,∴==,∴DF=2BF,=()2=,∴=,∴S△BEF=S△DCF,S△DCB=S△DCF,∴==,故選D.【點睛】本題考查了相似三角形的性質(zhì)和判定和平行四邊形的性質(zhì),能熟記相似三角形的性質(zhì)是解此題的關(guān)鍵.4、A【分析】根據(jù)正方形的面積公式可得大正方形的邊長為,小正方形的邊長為5,再根據(jù)直角三角形的邊角關(guān)系列式即可求解.【詳解】解:∵大正方形的面積是125,小正方形面積是25,∴大正方形的邊長為,小正方形的邊長為5,∴,∴,∴.故選A.【點睛】本題考查了解直角三角形、勾股定理的證明和正方形的面積,難度適中,解題的關(guān)鍵是正確得出.5、A【分析】根據(jù)相反數(shù)的意義求解即可.【詳解】的相反數(shù)是-,故選:A.【點睛】本題考查了相反數(shù),在一個數(shù)的前面加上負號就是這個數(shù)的相反數(shù).6、B【分析】根據(jù)平均數(shù)、方差的定義計算即可.【詳解】∵小亮的成績和其它39人的平均數(shù)相同,都是90分,∴40人的平均數(shù)是90分,∵39人的方差為1,小亮的成績是90分,40人的平均分是90分,∴40人的方差為[1×39+(90-90)2]÷40<1,∴方差變小,∴平均分不變,方差變小故選B.【點睛】本題考查了平均數(shù)與方差,熟練掌握定義是解題關(guān)鍵.7、D【解析】試題分析:扇形面積的計算公式為:,故選擇D.8、C【解析】只有一個未知數(shù)且未知數(shù)的最高次數(shù)為2的整式方程為一元二次方程.【詳解】解:A選項,缺少a≠0條件,不是一元二次方程;B選項,分母上有未知數(shù),是分式方程,不是一元二次方程;C選項,經(jīng)整理后得x2+x=0,是關(guān)于x的一元二次方程;D選項,經(jīng)整理后是一元一次方程,不是一元二次方程;故選擇C.【點睛】本題考查了一元二次方程的定義.9、C【分析】若位似比是k,則原圖形上的點,經(jīng)過位似變化得到的對應(yīng)點的坐標(biāo)是或.【詳解】∵以原點O為位似中心,位似比為1:2,將縮小,∴點對應(yīng)點的坐標(biāo)為:或.

故選:C.【點睛】本題考查了位似圖形與坐標(biāo)的關(guān)系.此題比較簡單,注意在平面直角坐標(biāo)系中,如果位似變換是以原點為位似中心,相似比為,那么位似圖形對應(yīng)點的坐標(biāo)比等于.10、A【分析】如圖,過點B作BH⊥CD于H,過點E作EF⊥CD于F,由勾股定理可求AB的長,由銳角三角函數(shù)可求BH,CH,DH的長,由折疊的性質(zhì)可得∠BDC=∠B'DC,S△BCD=S△DCB'=50,利用銳角三角函數(shù)可求EF=,由面積關(guān)系可求解.【詳解】解:如圖,過點B作BH⊥CD于H,過點E作EF⊥CD于F,∵∠ACB=90°,BC=10,AC=20,∴AB=,S△ABC=×10×20=100,∵點D為斜邊中點,∠ACB=90°,∴AD=CD=BD=,∴∠DAC=∠DCA,∠DBC=∠DCB,∴sin∠BCD=sin∠DBC=,∴,∴BH=,∴CH=,∴DH=,∵將△BCD沿CD翻折得△B′CD,∴∠BDC=∠B'DC,S△BCD=S△DCB'=50,∴tan∠BDC=tan∠B'DC=,∴,∴設(shè)DF=3x,EF=4x,∵tan∠DCA=tan∠DAC=,∴,∴FC=8x,∵DF+CF=CD,∴3x+8x=,∴x=,∴EF=,∴S△DEC=×DC×EF=,∴S△CEB'=50-=,∴,故選:A.【點睛】本題考查了翻折變換,直角三角形的性質(zhì),銳角三角函數(shù)的性質(zhì),勾股定理等知識,添加恰當(dāng)輔助線是本題的關(guān)鍵.11、D【分析】根據(jù)題意利用基本數(shù)量關(guān)系即商品原價×(1-平均每次降價的百分率)=現(xiàn)在的價格,列方程即可.【詳解】解:由題意可列方程是:.故選:D.【點睛】本題考查一元二次方程的應(yīng)用最基本數(shù)量關(guān)系:商品原價×(1-平均每次降價的百分率)=現(xiàn)在的價格.12、A【解析】試題分析:連接OA,設(shè)⊙O的半徑為r,由于AB垂直平分半徑OC,AB=,則AD=,OD=,在Rt△AOD中,OA2=OD2+AD2,即r2=()2+()2,解得r=.考點:(1)垂徑定理;(2)勾股定理.二、填空題(每題4分,共24分)13、x≠1【分析】根據(jù)分母不等于0列式計算即可得解.【詳解】根據(jù)題意得,x-1≠0,解得:x≠1.故答案為x≠1.14、-2【分析】利用反比例函數(shù)k的幾何意義得到|k|=1,然后根據(jù)反比例函數(shù)所在的象限確定k的值.【詳解】∵△POM的面積等于1,∴|k|=1.∵反比例函數(shù)圖象過第二象限,∴k<0,∴k=﹣2.故答案為:﹣2.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值|k|.也考查了反比例函數(shù)的性質(zhì).15、①;5.95.【解析】試題解析:小明從路燈下A處,向前走了5米到達D處,行走過程中,他的影子將會越來越長;∵CD∥AB,∴△ECD∽△EBA,∴,即,∴AB=5.95(m).考點:中心投影.16、有兩個正根【分析】將原方程這里為一元二次方程的一般形式直接解方程或者求判別式與0的關(guān)系都可解題.【詳解】解:(x+1)(x-3)=2x-5整理得:,即,配方得:,解得:,,∴該一元二次方程根的情況是有兩個正跟;故答案為:有兩個正根.【點睛】此題考查解一元二次方程,或者求判別式與根的個數(shù)的關(guān)系.17、5π【分析】根據(jù)圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長進行計算.【詳解】解:設(shè)CB=x,則AB=2x,根據(jù)勾股定理得:x2+(2x)2=52,解得:x=,∴底面圓的半徑為,∴圓錐的側(cè)面積=××2π×5=5π.故答案為:5π.【點睛】本題考查圓錐的面積,熟練掌握圓錐的面積公式及計算法則是解題關(guān)鍵.18、(0,).【解析】試題分析:把點A坐標(biāo)代入y=x+4得a=3,即A(﹣1,3),把點A坐標(biāo)代入雙曲線的解析式得3=﹣k,即k=﹣3,聯(lián)立兩函數(shù)解析式得:,解得:,,即點B坐標(biāo)為:(﹣3,1),作出點A關(guān)于y軸的對稱點C,連接BC,與y軸的交點即為點P,使得PA+PB的值最小,則點C坐標(biāo)為:(1,3),設(shè)直線BC的解析式為:y=ax+b,把B、C的坐標(biāo)代入得:,解得:,所以函數(shù)解析式為:y=x+,則與y軸的交點為:(0,).考點:反比例函數(shù)與一次函數(shù)的交點問題;軸對稱-最短路線問題.三、解答題(共78分)19、(1)C(m,﹣1);(3)﹣3≤m≤0或3≤m≤3.【分析】(1)化成頂點式,即可求得頂點C的坐標(biāo);(3)由頂點C的坐標(biāo)可知,拋物線的頂點C在直線y=﹣1上移動.分別求出拋物線過點A、點B時,m的值,畫出此時函數(shù)的圖象,結(jié)合圖象即可求出m的取值范圍.【詳解】(1)y=x3﹣3mx+m3﹣1=(x﹣m)3﹣1,∴拋物線頂點為C(m,﹣1).(3)把A(0,3)的坐標(biāo)代入y=x3﹣3mx+m3﹣1,得3=m3﹣1,解得m=±3.把B(3,3)的坐標(biāo)代入y=x3﹣3mx+m3﹣1,得3=33﹣3m×3+m3﹣1,即m3﹣3m=0,解得m=0或m=3.結(jié)合函數(shù)圖象可知:﹣3≤m≤0或3≤m≤3.【點睛】本題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系,二次函數(shù)圖象上點的坐標(biāo)特征,提現(xiàn)了轉(zhuǎn)化思想和數(shù)形結(jié)合思想的應(yīng)用.20、(1)證明見解析;(2)PA+PB=PF+FC=PC;(3)1+.【分析】(1)欲證明AD是⊙O的切線,只需推知AD⊥AE即可;(2)首先在線段PC上截取PF=PB,連接BF,進而得出△BPA≌△BFC(AAS),即可得出PA+PB=PF+FC=PC;(3)利用△ADP∽△BDA,得出==,求出BP的長,進而得出△ADP∽△CAP,則=,則AP2=CP?PD求出AP的長,即可得出答案.【詳解】(1)證明:先作⊙O的直徑AE,連接PE,∵AE是直徑,∴∠APE=90°.∴∠E+∠PAE=90°.又∵∠DAP=∠PBA,∠E=∠PBA,∴∠DAP=E,∴∠DAP+∠PAE=90°,即AD⊥AE,∴AD是⊙O的切線;(2)PA+PB=PC,證明:在線段PC上截取PF=PB,連接BF,∵PF=PB,∠BPC=60°,∴△PBF是等邊三角形,∴PB=BF,∠BFP=60°,∴∠BFC=180°﹣∠PFB=120°,∵∠BPA=∠APC+∠BPC=120°,∴∠BPA=∠BFC,在△BPA和△BFC中,,∴△BPA≌△BFC(AAS),∴PA=FC,AB=CB,∴PA+PB=PF+FC=PC;(3)∵△ADP∽△BDA,∴==,∵AD=2,PD=1,∴BD=4,AB=2AP,∴BP=BD﹣DP=3,∵∠APD=180°﹣∠BPA=60°,∴∠APD=∠APC,∵∠PAD=∠E,∠PCA=∠E,∴∠PAD=∠PCA,∴△ADP∽△CAP,∴=,∴AP2=CP?PD,∴AP2=(3+AP)?1,解得:AP=或AP=(舍去),由(2)知△ABC是等邊三角形,∴AC=BC=AB=2AP=1+.【點睛】此題屬于圓的綜合題,涉及了圓周角定理,切線的判定與性質(zhì),相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì)等知識,綜合性較強,解答本題需要我們熟練各部分的內(nèi)容,對學(xué)生的綜合能力要求較高,一定要注意將所學(xué)知識貫穿起來.21、(1);(2)8;(3)①(),(),();②6.【分析】(1)將點C(0,-3)代入y=(x-1)2+k即可;(2)易求A(-1,0),B(3,0),拋物線頂點為(1,-4),當(dāng)P位于拋物線頂點時,△ABP的面積有最大值;(3)①當(dāng)0<m≤1時,h=-3-(m2-2m-3)=-m2+2m;當(dāng)1<m≤2時,h=-1-(-4)=1;當(dāng)m>2時,h=m2-2m-3-(-4)=m2-2m+1;②當(dāng)h=9時若-m2+2m=9,此時△<0,m無解;若m2-2m+1=9,則m=4,則P(4,5),△BCP的面積=(4+1)×3=6;【詳解】解:(1)因為拋物線與軸交于點,把代入,得,解得,所以此拋物線的解析式為,即;(2)令,得,解得,所以,所以;解法一:由(1)知,拋物線頂點坐標(biāo)為,由題意,當(dāng)點位于拋物線頂點時,的面積有最大值,最大值為;解法二由題意,得,所以,所以當(dāng)時,有最大值8;(3)①當(dāng)時,;當(dāng)時,;當(dāng)時,;②當(dāng)h=9時

若-m2+2m=9,此時△<0,m無解;若m2-2m+1=9,則m=4,∴P(4,5),∵B(3,0),C(0,-3),∴△BCP的面積=(4+1)×3=6;【點睛】本題考查二次函數(shù)的圖象及性質(zhì),是二次函數(shù)綜合題;熟練掌握二次函數(shù)的性質(zhì),數(shù)形結(jié)合,分類討論是解題的關(guān)鍵.22、(1)見解析;(2)見解析;(3)【分析】(1)易求DF長度即可判斷;(2)通過30°角所對的直角邊等于斜邊一半證得AE=2EF,EF=2CE即可得;(3)先證明△OFG為等邊三角形,△OPG為等邊三角形,即可確定扇形圓心角∠POG和∠GOF的大小均為60°,所以兩扇形面積相等,通過割補法得出最后陰影面積只與矩形OPDH和△OGF有關(guān),根據(jù)面積公式求出兩圖形面積即可.【詳解】(1)∵AF=AB=6,AD=BC=,∴DF=3,∴CF=DF=3,∴F是CD的中點(2)∵AF=6,DF=3,∴∠DAF=30°,∴∠EAF=30?,∴AE=2EF;∴∠EFC=30?,EF=2CE,∴AE=4CE(3)如圖,連接OP,OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG為等邊三角形,同理△OPG為等邊三角形,∴∠POG=∠FOG=60°,OH=,∴S扇形OPG=S扇形OGF,∴S陰影=(S矩形OPDH-S扇形OPG-S△OGH)+(S扇形OGF-S△OFG)=S矩形OPDH-S△OFG=,即圖中陰影部分的面積.【點睛】本題考查了正方形的性質(zhì),等邊三角形的性質(zhì)及解直角三角形,涉及知識點較多,綜合性較強,根據(jù)條件,結(jié)合圖形找準(zhǔn)對應(yīng)知識點是解答此題的關(guān)鍵.23、(1)是的切線;理由見解析;(2)的長.【分析】(1)連接,求得,根據(jù)圓周角定理得到,根據(jù)平行四邊形的性質(zhì)得到,得到,推出,于是得到結(jié)論;(2)連接,由點是的中點,得到,求得,根據(jù)弧長公式即可得到結(jié)論.【詳解】(1)是的切線;理由:連接,,,,,四邊形是平行四邊形,,,,,是的切線;(2)連接,點是的中點,,,,的長.【點睛】本題考查了直線與圓的位置關(guān)系,圓周角定理,平行四邊形的性質(zhì),正確的識別圖形是解題的關(guān)鍵.24、(1)y=x+3,y=﹣x2﹣2x+3;(2)(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,)【分析】(1)首先由題意根據(jù)拋物線的對稱性求得點B的坐標(biāo),然后利用交點式,求得拋物線的解析式;再利用待定系數(shù)法求得直線的解析式;(2)首先利用勾股定理求得BC,PB,PC的長,然后分別從點B為直角頂點、點C為直角頂點、點P為直角頂點去分析求解即可求得答案.【詳解】解:(1)∵拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),拋物線與x軸的另一交點為B,∴B的坐標(biāo)為:(﹣3,0/

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論