2023屆上海市廊下中學(xué)數(shù)學(xué)九年級上冊期末學(xué)業(yè)水平測試試題含解析_第1頁
2023屆上海市廊下中學(xué)數(shù)學(xué)九年級上冊期末學(xué)業(yè)水平測試試題含解析_第2頁
2023屆上海市廊下中學(xué)數(shù)學(xué)九年級上冊期末學(xué)業(yè)水平測試試題含解析_第3頁
2023屆上海市廊下中學(xué)數(shù)學(xué)九年級上冊期末學(xué)業(yè)水平測試試題含解析_第4頁
2023屆上海市廊下中學(xué)數(shù)學(xué)九年級上冊期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.連接對角線相等的任意四邊形各邊中點得到的新四邊形的形狀是()A.正方形 B.菱形 C.矩形 D.平行四邊形2.完全相同的6個小矩形如圖所示放置,形成了一個長、寬分別為n、m的大矩形,則圖中陰影部分的周長是()A.6(m﹣n) B.3(m+n) C.4n D.4m3.下列拋物線中,與拋物線y=-3x2+1的形狀、開口方向完全相同,且頂點坐標(biāo)為(-1,2)的是()A.y=-3(x+1)2+2B.y=-3(x-2)2+2C.y=-(3x+1)2+2D.y=-(3x-1)2+24.小新拋一枚質(zhì)地均勻的硬幣,連續(xù)拋三次,硬幣落地均正面朝上,如果他第四次拋硬幣,那么硬幣正面朝上的概率為()A. B. C.1 D.5.如圖,在⊙中,半徑垂直弦于,點在⊙上,,則半徑等于()A. B. C. D.6.下列圖形中,是相似形的是()A.所有平行四邊形 B.所有矩形 C.所有菱形 D.所有正方形7.如圖,將△AOB繞著點O順時針旋轉(zhuǎn),得到△COD,若∠AOB=40°,∠BOC=30°,則旋轉(zhuǎn)角度是()A.10° B.30° C.40° D.70°8.同學(xué)們喜歡足球嗎?足球一般是用黑白兩種顏色的皮塊縫制而成的,如圖所示,黑色皮塊是正五邊形,白色皮塊是正六邊形.若一個球上共有黑白皮塊32塊,請你計算一下,黑色皮塊和白色皮塊的塊數(shù)依次為()A.16塊,16塊 B.8塊,24塊C.20塊,12塊 D.12塊,20塊9.如圖,在線段AB上有一點C,在AB的同側(cè)作等腰△ACD和等腰△ECB,且AC=AD,EC=EB,∠DAC=∠CEB,直線BD與線段AE,線段CE分別交于點F,G.對于下列結(jié)論:①△DCG∽△BEG;②△ACE∽△DCB;③GF·GB=GC·GE;④若∠DAC=∠CEB=90°,則2AD2=DF·DG.其中正確的是()A.①②③④ B.①②③ C.①③④ D.①②10.關(guān)于二次函數(shù),下列說法正確的是()A.圖像與軸的交點坐標(biāo)為 B.圖像的對稱軸在軸的右側(cè)C.當(dāng)時,的值隨值的增大而減小 D.的最小值為-3二、填空題(每小題3分,共24分)11.點A(1,-2)關(guān)于原點對稱的點A1的坐標(biāo)為________.12.方程的解是______________.13.方程的解是________.14.如圖,已知中,,D是線段AC上一點(不與A,C重合),連接BD,將沿AB翻折,使點D落在點E處,延長BD與EA的延長線交于點F,若是直角三角形,則AF的長為_________.15.如圖,在△ABC中,AD是BC上的高,tanB=cos∠DAC,若sinC=,BC=12,則AD的長_____.16.如圖,P是反比例函數(shù)圖象在第二象限上一點,且矩形PEOF的面積是3,則反比例函數(shù)的解析式為___________.17.某種傳染病,若有一人感染,經(jīng)過兩輪傳染后將共有49人感染.設(shè)這種傳染病每輪傳染中平均一個人傳染了x個人,列出方程為______.18.若、是方程的兩個實數(shù)根,且x1+x2=1-x1x2,則的值為________.三、解答題(共66分)19.(10分)小明投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn):每月的銷售量y(件)與銷售單價x(元/件)之間的關(guān)系可近似地看作一次函數(shù)y=-10x+500,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%.(1)設(shè)小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元/件)之間的函數(shù)表達式,并確定自變量x的取值范圍;(2)當(dāng)銷售單價定為多少元/件時,每月可獲得最大利潤?每月的最大利潤是多少?20.(6分)如圖,已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點,點A(2,5)在反比例函數(shù)的圖象上,過點A的直線y=x+b交x軸于點B.(1)求k和b的值;(2)求△OAB的面積.21.(6分)對于代數(shù)式ax2+bx+c,若存在實數(shù)n,當(dāng)x=n時,代數(shù)式的值也等于n,則稱n為這個代數(shù)式的不變值.例如:對于代數(shù)式x2,當(dāng)x=1時,代數(shù)式等于1;當(dāng)x=1時,代數(shù)式等于1,我們就稱1和1都是這個代數(shù)式的不變值.在代數(shù)式存在不變值時,該代數(shù)式的最大不變值與最小不變值的差記作A.特別地,當(dāng)代數(shù)式只有一個不變值時,則A=1.(1)代數(shù)式x2﹣2的不變值是,A=.(2)說明代數(shù)式3x2+1沒有不變值;(3)已知代數(shù)式x2﹣bx+1,若A=1,求b的值.22.(8分)如圖,已知∠BAC=30°,把△ABC繞著點A順時針旋轉(zhuǎn)到△ADE的位置,使得點D,A,C在同一直線上.(1)△ABC旋轉(zhuǎn)了多少度?(2)連接CE,試判斷△AEC的形狀;(3)求∠AEC的度數(shù).23.(8分)如圖,從一塊長80厘米,寬60厘米的鐵片中間截去一個小長方形,使截去小長方形的面積是原來鐵片面積的一半,并且剩下的長方框四周的寬度一樣,求這個寬度.24.(8分)已知AB是⊙O的直徑,C是圓上的點,D是優(yōu)弧ABC的中點.(1)若∠AOC=100°,則∠D的度數(shù)為,∠A的度數(shù)為;(2)求證:∠ADC=2∠DAB.25.(10分)如圖,在△ABC中,∠A=30°,∠C=90°,AB=12,四邊形EFPQ是矩形,點P與點C重合,點Q、E、F分別在BC、AB、AC上(點E與點A、點B均不重合).(1)當(dāng)AE=8時,求EF的長;(2)設(shè)AE=x,矩形EFPQ的面積為y.①求y與x的函數(shù)關(guān)系式;②當(dāng)x為何值時,y有最大值,最大值是多少?(3)當(dāng)矩形EFPQ的面積最大時,將矩形EFPQ以每秒1個單位的速度沿射線CB勻速向右運動(當(dāng)點P到達點B時停止運動),設(shè)運動時間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍.26.(10分)箱子里有4瓶牛奶,其中有一瓶是過期的.現(xiàn)從這4瓶牛奶中不放回地任意抽取2瓶.(1)請用樹狀圖或列表法把上述所有等可能的結(jié)果表示出來;(2)求抽出的2瓶牛奶中恰好抽到過期牛奶的概率.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】先根據(jù)三角形的中位線定理和平行四邊形的判定定理證得此四邊形為平行四邊形,再判斷一組鄰邊相等,所以根據(jù)菱形的定義可知該中點四邊形是菱形.【詳解】如圖所示,連接AC、BD,

∵E、F、G、H分別為各邊的中點,

∴HG、EF分別為△ACD與△ABC的中位線,

∴HG∥AC∥EF,,

∴四邊形EFGH是平行四邊形;同理可得,,∵AC=BD,

∴EH=GH,

∴四邊形EFGH是菱形;

故選:B.【點睛】本題考查的是三角形中位線定理,即三角形的中位線平行于底邊且等于底邊的一半.解答此題的關(guān)鍵是根據(jù)題意畫出圖形,利用數(shù)形結(jié)合思想解答.2、D【詳解】解:設(shè)小長方形的寬為a,長為b,則有b=n-3a,陰影部分的周長:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故選D.3、A【解析】由條件可設(shè)出拋物線的頂點式,再由已知可確定出其二次項系數(shù),則可求得拋物線解析式.【詳解】∵拋物線頂點坐標(biāo)為(﹣1,1),∴可設(shè)拋物線解析式為y=a(x+1)1+1.∵與拋物線y=﹣3x1+1的形狀、開口方向完全相同,∴a=﹣3,∴所求拋物線解析式為y=﹣3(x+1)1+1.故選A.【點睛】本題考查了二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關(guān)鍵,即在y=a(x-h(huán))1+k中,頂點坐標(biāo)為(h,k),對稱軸為x=h.4、A【解析】試題分析:因為一枚質(zhì)地均勻的硬幣只有正反兩面,所以不管拋多少次,硬幣正面朝上的概率都是.故選A.考點:概率公式.5、B【分析】直接利用垂徑定理進而結(jié)合圓周角定理得出是等腰直角三角形,進而得出答案.【詳解】半徑弦于點,,,,是等腰直角三角形,,,則半徑.故選:B.【點睛】此題主要考查了勾股定理,垂徑定理和圓周角定理,正確得出是等腰直角三角形是解題關(guān)鍵.6、D【分析】根據(jù)對應(yīng)角相等,對應(yīng)邊成比例的兩個多邊形相似,依次分析各項即可判斷.【詳解】所有的平行四邊形、矩形、菱形均不一定是相似多邊形,而所有的正方形都是相似多邊形,故選D.【點睛】本題是判定多邊形相似的基礎(chǔ)應(yīng)用題,難度一般,學(xué)生只需熟練掌握特殊四邊形的性質(zhì)即可輕松完成.7、D【分析】由旋轉(zhuǎn)的性質(zhì)可得旋轉(zhuǎn)角為∠AOC=70°.【詳解】解:∵∠AOB=40°,∠BOC=30°,∴∠AOC=70°,∵將△AOB繞著點O順時針旋轉(zhuǎn),得到△COD,∴旋轉(zhuǎn)角為∠AOC=70°,故選:D.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),解決本題的關(guān)鍵是熟練掌握旋轉(zhuǎn)的意義和性質(zhì),能夠有旋轉(zhuǎn)的性質(zhì)得到相等的角.8、D【解析】試題分析:根據(jù)題意可知:本題中的等量關(guān)系是“黑白皮塊32塊”和因為每塊白皮有3條邊與黑邊連在一起,所以黑皮只有3y塊,而黑皮共有邊數(shù)為5x塊,依此列方程組求解即可.解:設(shè)黑色皮塊和白色皮塊的塊數(shù)依次為x,y.則,解得,即黑色皮塊和白色皮塊的塊數(shù)依次為12塊、20塊.故選D.9、A【解析】利用三角形的內(nèi)角和定理及兩組角分別相等證明①正確;根據(jù)兩組邊成比例夾角相等判斷②正確;利用③的相似三角形證得∠AEC=∠DBC,又對頂角相等,證得③正確;根據(jù)△ACE∽△DCB證得F、E、B、C四點共圓,由此推出△DCF∽△DGC,列比例線段即可證得④正確.【詳解】①正確;在等腰△ACD和等腰△ECB中AC=AD,EC=EB,∠DAC=∠CEB,∴∠ACD=∠ADC=∠BCE=∠BEC,∴∠DCG=180-∠ACD-∠BCE=∠BEC,∵∠DGC=∠BGE,∴△DCG∽△BEG;②正確;∵∠ACD+∠DCG=∠BCE+∠DCG,∴∠ACE=∠DCB,∵,∴△ACE∽△DCB;③正確;∵△ACE∽△DCB,∴∠AEC=∠DBC,∵∠FGE=∠CGB,∴△FGE∽△CGB,∴GF·GB=GC·GE;④正確;如圖,連接CF,由②可得△ACE∽△DCB,∴∠AEC=∠DBC,∴F、E、B、C四點共圓,∴∠CFB=∠CEB=90,∵∠ACD=∠ECB=45,∴∠DCE=90,∴△DCF∽△DGC∴,∴,∵,∴2AD2=DF·DG.故選:A.【點睛】此題考查相似三角形的判定及性質(zhì),等腰三角形的性質(zhì),③的證明可通過②的相似推出所需要的條件繼而得到證明;④是本題的難點,需要重新畫圖,并根據(jù)條件判定DF、DG所在的三角形相似,由此可判斷連接CF,由此證明F、E、B、C四點共圓,得到∠CFB=∠CEB=90是解本題關(guān)鍵.10、D【解析】分析:根據(jù)題目中的函數(shù)解析式可以判斷各個選項中的結(jié)論是否成立,從而可以解答本題.詳解:∵y=2x2+4x-1=2(x+1)2-3,∴當(dāng)x=0時,y=-1,故選項A錯誤,該函數(shù)的對稱軸是直線x=-1,故選項B錯誤,當(dāng)x<-1時,y隨x的增大而減小,故選項C錯誤,當(dāng)x=-1時,y取得最小值,此時y=-3,故選項D正確,故選D.點睛:本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.二、填空題(每小題3分,共24分)11、(-1,2)【分析】根據(jù)關(guān)于原點對稱的點的橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù)解答.【詳解】解:∵點A(1,-2)與點A1(-1,2)關(guān)于原點對稱,∴A1(-1,2).故答案為:(-1,2).【點睛】本題考查了關(guān)于原點對稱的點的坐標(biāo),熟記關(guān)于原點對稱的點的橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù)是解題的關(guān)鍵.12、,【分析】根據(jù)題意先移項,再提取公因式,求出x的值即可.【詳解】解:移項得,x(x-3)-x=0,提取公因式得,x(x-3-1)=0,即x(x-4)=0,解得,.故答案為:,.【點睛】本題考查的是解一元二次方程-因式分解法,熟練利用因式分解法解一元二次方程是解答此題的關(guān)鍵.13、.【分析】方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到的值,經(jīng)檢驗得到分式方程的解.【詳解】去分母得:,解得:,經(jīng)檢驗是的根,所以,原方程的解是:.故答案是為:【點睛】本題考查了解分式方程,解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.解分式方程一定注意要驗根.14、或【分析】分別討論∠E=90°,∠EBF=90°兩種情況:①當(dāng)∠E=90°時,由折疊性質(zhì)和等腰三角形的性質(zhì)可推出△BDC為等腰直角三角形,再求出∠ABD=∠ABE=22.5°,進而得到∠F=45°,推出△ADF為等腰直角三角形即可求出斜邊AF的長度;②當(dāng)∠EBF=90°時,先證△ABD∽△ACB,利用對應(yīng)邊成比例求出AD和CD的長,再證△ADF∽△CDB,利用對應(yīng)邊成比例求出AF.【詳解】①當(dāng)∠E=90°時,由折疊性質(zhì)可知∠ADB=∠E=90°,如圖所示,在△ABC中,CA=CB=4,∠C=45°∴∠ABC=∠BAC==67.5°∵∠BDC=90°,∠C=45°∴△BCD為等腰直角三角形,∴CD=BC=,∠DBC=45°∴∠EBA=∠DBA=∠ABC-∠DBC=67.5°-45°=22.5°∴∠EBF=45°∴∠F=90°-45°=45°∴△ADF為等腰直角三角形∴AF=②當(dāng)∠EBF=90°時,如圖所示,由折疊的性質(zhì)可知∠ABE=∠ABD=45°,∵∠BAD=∠CAB∴△ABD∽△ACB∴由情況①中的AD=,BD=,可得AB=∴AD=∴CD=∵∠DBC=∠ABC-∠ABD=22.8°∵∠E=∠ADB=∠C+∠DBC=67.5°∴∠F=22.5°=∠DBC∴EF∥BC∴△ADF∽△CDB∴∴∵∠E=∠BDA=∠C+∠DBC=45°+67.5°-∠ABD=112.5°-∠ABD,∠EBF=2∠ABD∴∠E+∠EBF=112.5°+∠ABD>90°∴∠F不可能為直角綜上所述,AF的長為或.故答案為:或.【點睛】本題考查了等腰三角形的性質(zhì),折疊的性質(zhì),勾股定理,相似三角形的判定和性質(zhì),熟練掌握折疊前后對應(yīng)角相等,分類討論利用相似三角形的性質(zhì)求邊長是解題的關(guān)鍵.15、1【分析】在Rt△ADC中,利用正弦的定義得sinC==,則可設(shè)AD=12x,所以AC=13x,利用勾股定理計算出DC=5x,由于cos∠DAC=sinC得到tanB=,接著在Rt△ABD中利用正切的定義得到BD=13x,所以13x+5x=12,解得x=,然后利用AD=12x進行計算.【詳解】在Rt△ADC中,sinC==,設(shè)AD=12x,則AC=13x,∴DC==5x,∵cos∠DAC=sinC=,∴tanB=,在Rt△ABD中,∵tanB==,而AD=12x,∴BD=13x,∴13x+5x=12,解得x=,∴AD=12x=1.故答案為1.【點睛】本題主要考查解直角三角形,熟練掌握銳角三角函數(shù)的定義,是解題的關(guān)鍵.16、【分析】根據(jù)從反比例函數(shù)的圖象上任意一點向坐標(biāo)軸作垂線段,垂線段和坐標(biāo)軸所圍成的矩形的面積是,且保持不變,進行解答即可.【詳解】由題意得,∵反比例函數(shù)圖象在第二象限∴∴反比例函數(shù)的解析式為y=-.【點睛】本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握反比例函數(shù)k的幾何意義,即可完成.17、x(x+1)+x+1=1.【分析】設(shè)每輪傳染中平均一人傳染x人,那么經(jīng)過第一輪傳染后有x人被感染,那么經(jīng)過兩輪傳染后有x(x+1)+x+1人感染,列出方程即可.【詳解】解:設(shè)每輪傳染中平均一人傳染x人,則第一輪后有x+1人感染,第二輪后有x(x+1)+x+1人感染,由題意得:x(x+1)+x+1=1.故答案為:x(x+1)+x+1=1.【點睛】本題主要考查了由實際問題抽象出一元二次方程,掌握一元二次方程是解題的關(guān)鍵.18、1【詳解】若x1,x2是方程x2-2mx+m2-m-1=0的兩個實數(shù)根;∴x1+x2=2m;x1·x2=m2?m?1,∵x1+x2=1-x1x2,∴2m=1-(m2?m?1),解得:m1=-2,m2=1.又∵一元二次方程有實數(shù)根時,△,∴,解得m≥-1,∴m=1.故答案為1.【點睛】(1)若方程的兩根是,則,這一關(guān)系叫做一元二次方程根與系數(shù)的關(guān)系;(2)使用一元二次方程根與系數(shù)關(guān)系解題的前提條件是方程要有實數(shù)根,即各項系數(shù)的取值必須滿足根的判別式△=.三、解答題(共66分)19、(1)w=-10x2+700x-10000(20≤x≤32);(2)當(dāng)銷售單價定為32元/件時,每月可獲得最大利潤,最大利潤是2160元.【解析】分析:(1)由題意得,每月銷售量與銷售單價之間的關(guān)系可近似看作一次函數(shù),利潤=(定價-進價)×銷售量,從而列出關(guān)系式;

(2)首先確定二次函數(shù)的對稱軸,然后根據(jù)其增減性確定最大利潤即可;詳解:(1)由題意,得:w=(x-20)?y=(x-20)?(-10x+500)=-10x2+700x-10000,即w=-10x2+700x-10000(20≤x≤32).(2)w=-10x2+700x-10000=-10(x-35)2+2250.對稱軸為:x=35,又∵a=-10<0,拋物線開口向下,∴當(dāng)20≤x≤32時,w隨著x的增大而增大,∴當(dāng)x=32時,w最大=2160.答:當(dāng)銷售單價定為32元/件時,每月可獲得最大利潤,最大利潤是2160元.點睛:二次函數(shù)的應(yīng)用.重點在于根據(jù)題意列出函數(shù)關(guān)系式.20、(1)k=10,b=3;(2).【解析】試題分析:(1)、將A點坐標(biāo)代入反比例函數(shù)解析式和一次函數(shù)解析式分別求出k和b的值;(2)、首先根據(jù)一次函數(shù)求出點B的坐標(biāo),然后計算面積.試題解析:(1)、把x=2,y=5代入y=,得k==2×5=10把x=2,y=5代入y=x+b,得b=3(2)、∵y=x+3∴當(dāng)y=0時,x=-3,∴OB=3∴S=×3×5=7.5考點:一次函數(shù)與反比例函數(shù)的綜合問題.21、(3)﹣3和2;2;(2)見解析;(2)﹣2或3【分析】(3)根據(jù)不變值的定義可得出關(guān)于x的一元二次方程,解之即可求出x的值,再做差后可求出A的值;(2)由方程的系數(shù)結(jié)合根的判別式可得出方程2x2﹣x+3=3沒有實數(shù)根,進而可得出代數(shù)式2x2+3沒有不變值;(2)由A=3可得出方程x2﹣(b+3)x+3=3有兩個相等的實數(shù)根,進而可得出△=3,解之即可得出結(jié)論.【詳解】解:(3)依題意,得:x2﹣2=x,即x2﹣x﹣2=3,解得:x3=﹣3,x2=2,∴A=2﹣(﹣3)=2.故答案為﹣3和2;2.(2)依題意,得:2x2+3=x,∴2x2﹣x+3=3,∵△=(﹣3)2﹣4×2×3=﹣33<3,∴該方程無解,即代數(shù)式2x2+3沒有不變值.(2)依題意,得:方程x2﹣bx+3=x即x2﹣(b+3)x+3=3有兩個相等的實數(shù)根,∴△=[﹣(b+3)]2﹣4×3×3=3,∴b3=﹣2,b2=3.答:b的值為﹣2或3.【點睛】本題考查了一元二次方程的應(yīng)用以及根的判別式,根據(jù)不變值的定義,求出一元二次方程的解是解題的關(guān)鍵.22、(1)150°;(2)詳見解析;(3)15°【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì),利用補角性質(zhì)即可解題;(2)根據(jù)旋轉(zhuǎn)后的對應(yīng)邊相等即可解題;(3)利用外角性質(zhì)即可解題.【詳解】解:(1)∵點D,A,C在同一直線上,∴∠BAD=180°-∠BAC=180°-30°=150°,∴△ABC旋轉(zhuǎn)了150°;(2)根據(jù)旋轉(zhuǎn)的性質(zhì),可知AC=AE,∴△AEC是等腰三角形;(3)根據(jù)旋轉(zhuǎn)的性質(zhì)可知,∠CAE=∠BAD=150°,AC=AE,∴∠AEC=∠ACE=(180°-∠CAE)÷2=(180°-150°)÷2=15°.【點睛】本題考查了旋轉(zhuǎn)變換的性質(zhì),理解旋轉(zhuǎn)三要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)方向、旋轉(zhuǎn)角度的概念、掌握旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵.23、長方框的寬度為10厘米【分析】設(shè)長方框的寬度為x厘米,則減去小長方形的長為(80﹣2x)厘米,寬為(60﹣2x)厘米,根據(jù)長方形的面積公式結(jié)合截去小長方形的面積是原來鐵片面積的一半,即可得出關(guān)于x的一元二次方程,解之取其較小值即可得出結(jié)論.【詳解】解:設(shè)長方框的寬度為x厘米,則減去小長方形的長為(80﹣2x)厘米,寬為(60﹣2x)厘米,依題意,得:(80﹣2x)(60﹣2x)=×80×60,整理,得:x2﹣70x+600=0,解得:x1=10,x2=60(不合題意,舍去).答:長方框的寬度為10厘米.【點睛】本題考查了一元二次方程的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.24、(1)50°,25°;(2)見解析【分析】(1)連接OD.證明△AOD≌△COD即可解決問題.(2)利用全等三角形的性質(zhì),等腰三角形的性質(zhì)解決問題即可.【詳解】(1)解:連接OD.∵,∴AD=CD,∵OD=OD,OA=OC,∴△AOD≌△COD(SSS),∴∠A=∠C,∵∠A=∠ODA,∠C=∠ODC,∴∠A=∠C=∠ADO=∠CDO,∵∠ADC=∠AOC=50°,∴∠A=∠ADO=∠ADC=25°,故答案為50°,25°.(2)證明:∵△AOD≌△COD(SSS),∴∠A=∠C,∵∠A=∠ODA,∠C=∠ODC,∴∠A=∠C=∠ADO=∠CDO,∴∠ADC=2∠DAB.【點睛】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論