版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
AmemberofNSGGroup1AmemberofNSGGroup1ApplicationofInorganicChemistryinIndustryFlatGlassandCoatingsOnGlassDrTroyManningAdvancedTechnologist,On-lineCoatingsPilkingtonEuropeanTechnicalCentreHallLaneLathomUKtroy.manningpilkington2ApplicationofInorganicChemiOutlineOverviewofFlatGlassindustryandNSG/PilkingtonFlatGlassmanufacture FloatGlassProcessCoatingtechnologywithintheglassindustryChemicalVapourDepositionExamplesofonlinecoatingapplicationsLowEmissivity/SolarControlSelfCleaningSummarySuggestedReading3OutlineOverviewofFlatGlassGlobalFlatGlassMarketGlobalMarket
37milliontonnes(4.4billionsq.m)BuildingProducts33mtonnes-Automotive4mtonnesOfwhich24million=highqualityfloatglass3million=sheet2million=rolled8million=lowerqualityfloat(mostlyChina)
GlobalValue
Atprimarymanufacturelevel€15billionAtprocessedlevel€50billion4GlobalFlatGlassMarketGlobalNSGandPilkingtoncombinedAglobalglassleader–thepureplayinFlatGlassCombinedannualsalesc.£4billionEqualtoAsahiGlassinscale,mostprofitableinFlatGlassOwnership/interestsin46floatlines6.4milliontonnesannualoutputWidenedAutomotivecustomerbase36,000employeesworldwideManufacturingoperationsin26countriesSalesin130+countries5NSGandPilkingtoncombinedAgManufactureofFlatGlassFourmainmethodsPlateGlass(1688)–moltenglasspouredontoaflatbed,spread,cooledandpolishedSheetGlass(1905)–continuoussheetofglassdrawnfromtankofmoltenglassRolledGlass(1920)–moltenglasspouredontototworollerstoachieveaneventhickness,makingpolishingeasier.Usedtomakepatternedandwiredglass.FloatGlass(1959)–moltenglasspouredontobedofmoltentinanddrawnoffincontinuousribbon.Giveshighqualityflatglasswitheventhicknessandfirepolishfinish.~320float-glasslinesworldwide6ManufactureofFlatGlassFourMeltingfurnaceFloatbathCoolinglehrContinuosribbonofglassCrosscuttersLargeplatelift-offdevicesSmallplatelift-offdevicesRawmaterialfeedTheFloat-GlassProcessOperatesnon-stopfor10-15years6000km/year0.4mm-25mmthick,upto3mwide7MeltingfurnaceFloatbathCooliTheFloatGlassProcess8TheFloatGlassProcess8Rawmaterials9Rawmaterials9MeltingFurnace10MeltingFurnace10FloatBath11FloatBath11FloatGlassPlant12FloatGlassPlant12TheFloat-GlassProcessFine-grainedingredients,closelycontrolledforquality,aremixedtomakebatch,whichflowsasablanketontomoltenglassat1500oCinthemelter.Thefurnacecontains2000tonnesofmoltenglass.Afterabout50hours,glassfromthemelterflowsgentlyoverarefractoryspoutontothemirror-likesurfaceofmoltentin,startingat1100oCandleavingthefloatbathasasolidribbonat600oC.Despitethetranquillitywithwhichfloatglassisformed,considerablestressesaredevelopedintheribbonasitcools.13TheFloat-GlassProcessFine-grRawMaterialsOxide %inglassRawmaterialsourceSiO2 72.2 SandNa2O 13.4 SodaAsh(Na2CO3)CaO 8.4 Limestone(CaCO3)MgO 4.0 Dolomite(MgCO3.CaCO3)Al2O3 1.0 Impurityinsand,FeldsparorCalumiteFe2O3 0.11 ImpurityinsandorRouge(Fe2O3)SO3 0.20 SodiumsulphateC 0.00 Anthracite14RawMaterialsOxide %inglRawmaterials
SiO2 Verydurable,BUThighmeltingpoint(>1700°C)!+Na2O Meltsatalowertemperature,BUTdissolvesinwater!+CaO Moredurable,BUTwillnotforminbathwithout crystallisation+MgO Glassstaysasasuper-cooledliquidinbath,no crystallisation+Al2O3 Addsdurability+Fe2O3 Addsrequiredlevelof‘green’colourforcustomer15RawmaterialsSiO2 VerydurablChemistryofGlassImportantglassmakingchemistry:basicreactionsNa2CO3+SiO2
1500oCNa2SiO3+CO2Na2SiO3+xSiO2
Na2SO4(Na2O)(SiO2)(x+1)Digestion16ChemistryofGlassImportantglCompositionofGlass17CompositionofGlass17StructureofGlassRandomnetworkof[SiO4]-tetrahedralunits.Na-OenterSi-Onetworkaccordingtovalency–NetworkFormersCaandMg–NetworkModifiers–makestructuremorecomplextopreventcrystallisation18StructureofGlassRandomnetwoBody-tintedGlassIonResultingColourofGlassFerrous(Fe2+)BlueFerric(Fe3+)YellowFe2++Fe3+GreenSelenium(SeO2)BronzeCobalt(Co2+)Grey/BlueNickel(Ni2+)Grey19Body-tintedGlassIonResultingCIELa*b*colourspace20CIELa*b*colourspace20CIELa*b*colourspace21CIELa*b*colourspace21FunctionsofaWindowLightin–homes,officesLightout–shops,museumdisplaysHeatin–heatingdominatedclimatesHeatout–coolingdominatedclimatesCanchangepropertiesofglassbyapplyingcoatingstothesurface22FunctionsofaWindowLightinMakingawindowfunctional-coatingsAwidevarietyofcoatingtechnologiesareutilisedbytheglassindustrySprayPyrolysisPowderSprayChemicalVapourDepositionSputterCoatingThermalEvaporationCoatingsSolGelCoatings
TheseareappliedOnLinei.e.astheglassisproducedonthefloatlineOffLinei.e.coatingnotnecessarilyproducedatthesamelocation23Makingawindowfunctional-cVariationsofCVDAtmosphericPressure–APCVDLowPressure-LPCVDAerosolAssisted-AACVDMetalorganic–MOCVDCombustion/Flame–CCVDHotWire/Filament–HWCVD/HFCVDPlasmaEnhanced-PECVDLaserAssisted–LACVDMicrowaveAssisted–MWCVDAtomicLayerDeposition–ALD24VariationsofCVDAtmosphericPChemicalVapourDeposition25ChemicalVapourDeposition25ChemicalVapourDepositionMaingasflowregionGasPhaseReactionsSurfaceDiffusionDesorptionofFilmPrecursorByProductsDiffusiontosurface26ChemicalVapourDepositionMainChemicalVapourDepositionAnimationkindlysuppliedbyDr.WarrenCross,UniversityofNottingham27ChemicalVapourDepositionAnimCVDprocessesandparametersProcessParametersTransportPrecursorsGasphasereactionPressure,temperature,flowconditions,boundarylayerthickness,gasphaseconcentration,precursors,carriergasDiffusionPressure,temperature,flowconditions,boundarylayerthickness,gasphaseconcentrationAdsorptionTemperature,gasphaseconcentration,numberandnatureofsitesSurfacereactionTemperature,natureofsurfaceDesorptionofby-productsTemperature,pressure,natureofsurfaceDiffusiontolatticesiteTemperature,surfacemobility,numberofvacantsites28CVDprocessesandparametersPrCVDPrecursorPropertiesVolatile–gas,liquid,lowmeltingpointsolid,sublimablesolidPureStableundertransportReact/Decomposecleanlytogivedesiredcoating–minimisecontaminantsCanbesinglesourceordual/multi-source29CVDPrecursorPropertiesVolatiCVDPrecursorsSingleSource–pyrolysis(thermaldecomposition)e.gTi(OC2H5)4TiO2+4C2H4+2H2O(>400oC)Oxidatione.gSiH4(g)+O2(g)SiO2(s)+2H2(g)Reductione.g.WF6(g)+3H2(g)W(s)+6HF(g)Dualsourcee.g.TiCl4(g)+4EtOH(g)TiO2(s)+4HCl(g)+2EtOEt(g)30CVDPrecursorsSingleSource–DualSourceandSingleSourcePrecursorsFilmDualSourceSingleSourceGaAsGaCl3+AsH3Me2Ga(AsH2)TiNTiCl4+NH3Ti(NMe2)4WSiWCl6+SiH4W(SiR)4TiO2TiCl4+H2OTi(OiPr)4CdSeCdMe2+H2SeCd(SeR)231DualSourceandSingleSourceTransportofPrecursorsBubblerforliquidsandlowmeltingsolidsDirectLiquidInjection–syringeandsyringedriverforliquidsandsolutionsSublimationforsolids–hotgaspassedoverheatedprecursorAerosolofprecursorsolutions32TransportofPrecursorsBubblerEffectofTemperatureonGrowthRateIndependentoftemperature33EffectofTemperatureonGrowtFlowconditionsLaminarFlowregimeTurbulentFlowRegime34FlowconditionsLaminarFlowreReynoldsNumberDimensionlessnumberdescribingflowconditionsr=Massdensityrelatedtoconcnandpartialpressureu=averagevelocity=viscosityL=relevantlength,relatedtoreactordimensionsIfRe<10LaminarflowIfRe>>1000fullyturbulentflowRealityisbetweenthetwoextremes35ReynoldsNumberDimensionlessnDimensionlessNumbersReducesthenumberofparametersthatdescribeasystemMakesiteasiertodeterminerelationshipsexperimentallyForexample:DragForceonaSphere Variables:Force=f(velocity,diameter,viscosity,density)Canbereducedto2“dimensionlessgroups”: Dragcoefficient(CD)andReynoldsnumber(Re)36DimensionlessNumbersReducestDimensionlessNumbersLaminarflowregimeTurbulentflowregimeExperimentalvaluesofCDforspheresinfluidflowsatvariousRe37DimensionlessNumbersLaminarfBoundaryLayer–gasvelocityFrictionalforcesagainstreactorwallsdecreasegasvelocityTheboundarylayerthicknesscanbeestimatedfrom:38BoundaryLayer–gasvelocityFBoundaryLayer-temperatureContactwithhotsurfacesincreasestemperature39BoundaryLayer-temperatureCoBoundaryLayer–precursorconcentrationDepletionofprecursordecreasesgasphaseconcentration40BoundaryLayer–precursorconNucleationandGrowthVanderWaalstypeadsorptionofprecursortosubstratePrecursorsthendiffuseacrosssurfacePrecursorsdiffuseacrossboundarylayertosurfaceAndcanbedesorbedbackintomaingasflowOrcanfindlowenergybindingsitestocoalesceintofilmMainGasFlow41NucleationandGrowthVanderWNucleationandGrowthSubstrateTemperatureGrowthRateSurfaceDiffusionCrystallinityLowHighSlowrelativefluxofprecursorsAmorphous–nocrystallinestructureHighLowFastrelativetofluxofprecursorsEpitaxial–replicatessubstratestructureIntermediateIntermediateIntermediatePolycrystalline42NucleationandGrowthSubstrateGrowthMechanisms(b)Frank-vanderMerweLayergrowth(c)Stranski-KastanovMixedlayeredandislandgrowth(a)Volmer-WeberIslandgrowth43GrowthMechanisms(b)Frank-vThinFilmAnalysisManytechniquesareusedtocharacterisethinfilmsExamplesincludeXRD–crystallinity,phaseXRR–layerthickness,layerroughnessSEM/EDX/WDX–morphology,thickness,compositionRaman–phase,bondingFTIR–phase,bondingXPS–composition,depthprofiling,dopingSIMS–composition,depthprofiling,dopingAFM–roughness,surfacemorphologyTEM–crystallinestructure,crystaldefectsAnalysisoffunctionalproperties44ThinFilmAnalysisManytechniqCVDonGlassForon-linecoatingofglasswerequire:Highgrowthrates–requiredthicknessin<2sStablechemistry–uniformcoatingsforcontinuousoperationformanydaysGoodadhesiontoglassHighefficiency–reducecosts45CVDonGlassForon-linecoatinAPCVDStrengthsandWeaknessesStrengthsWeaknessesResultOn-linecoatingpossibleReducedflexibilityReducedlabourcosts,highvolumemanufactureFreshsubstratesurfacesNowashingstep,enhancedadhesionHighdepositionratesNeedtomatchlinespeedThickfilmspossiblewithhighthroughputHardfilmsImprovedprocessabilityandperformanceStructurecontrolpossiblee.g.crystallinityRoughsurfaceImprovedfunctionalpropertiesanddurabilityVolatileprecursorsrequiredLimitedrangeofmaterials46APCVDStrengthsandWeaknessesOn-LineCoatingPositionsLoadrawmaterialsMeltingFloatingCoolingCuttingandStacking25oCGlassribbon600oC1050oC40oC1500oCPossiblepositionsforCVDcoatingsystems47On-LineCoatingPositionsLoadLaminarFlowCVDCoaterGlassGlassRibbonFlowUp-StreamExhaustDown-StreamExhaustPrecursorgasesOutsideAtmosphere48LaminarFlowCVDCoaterGlassGlAPCVDApplicationsonGlassCoatingtechnologyallowsustoaddfunctionalitytoglassCoatingtechnologyistodayusedforavarietyofproductsLowEmissivitycoatingstoreduceheatingbillsSolarControlcoatingstoreducesolarheatgainTechnicalproductse.g.TCO’sforLCDdisplays,solarcellsAnti-ReflectiveProductsHydrophobicCoatingsSelfCleaningCoatingsSmartCoatingse.g.electrochromics,thermochromics,photochromics49APCVDApplicationsonGlassCoaLow-EmissivityCoatingsDesignedtoreduceheatingbillsInadoubleglazedunit,alow-emissivitycoatingontheinnerpaneblocksradiativeheattryingtoescapeintothecavity50Low-EmissivityCoatingsDesigneEmissivityEmissivityistheratioofradiationemittedbyablackbodyorasurfacetothetheoreticalradiationpredictedbyPlanck’slaw.Surfaceemissivityisgenerallymeasuredindirectlybyassumingthate
=
1
-
reflectivity,usuallyataspecifiedwavelength51EmissivityEmissivityistheraSolarSpectrumWehavetodistinguishbetween:whatcomesfromtheoutsidetotheinside–solarspectrumwhatgoesfromtheinsidetotheoutside-heatVisiblelightInfra-RedUV52SolarSpectrumWehavetodistiOutsidetoInsideOptimalcurveforsolarcontrol-noUV -allvisiblelightpass -noIROptimalcurveforlow-e-noUV -allvisiblelightpass -allIRpass53OutsidetoInsideOptimalcurveInsidetoOutside–NoGlazing5μm50μmHeatradiation(“Blackbody”)at23.9oC
UVVisiblelightIR54InsidetoOutside–NoGlazingInsidetoOutside–Low-eCoatedGlassLowemissivitycoatedproductslimittheblackbodyradiationi.e.theenergylossesthroughthewindow: K-Glasse=0.1555InsidetoOutside–Low-eCoatTransparentConductingOxidesDopedmetaloxidesdisplayingn-typeconductivityF-substitutesforO2-intheSnO2latticereleasinganelectronintotheconductionbandi.e.Sn4+O2-2-xF-xe-xClosetometallicconductivity(15W/€)canbeachievedbutwithhighopticaltransmittance(bandgap~4eV)C.G.Granqvist,Adv.Mater.,2019,15,1789-180356TransparentConductingOxidesDCVDofSnO2:FSnCl4+H2O+HFSnO2:F+HCl(~1.5at%F)MuchgasphasereactionGasesintroducedseparatelyinturbulentflowregimeVeryhighgrowthrates>100nm/spossibleLowprecursorefficiency<10%SiCxOy(70nm)SnO2:F(350nm)GlassSiH4+C2H4+CO2
SiCxOy+H2O+otherby-productsUsedascoloursuppressionandbarrierlayer57CVDofSnO2:FSnCl4+H2O+HFLowEmissivityCoatingGenerallybasedonSnO2:F(TransparentConductiveOxide)SiCOunderlayerusedascoloursuppressant58LowEmissivityCoatingGenerallLow-EandSolarControlCoatings59Low-EandSolarControlCoatinSelf-CleaningGlassTwomechanisms:SuperhydrophilicityPhotocatalyticdegradationoforganicmatter.TiO2coating60Self-CleaningGlassTwomechaniSuperhydrophilicityOxygenvacanciesTiO-TiOTiHTiTiTiH+TiOTiOTiTiOTiOTiHHH2O(OH-,
H+)WaterdropletsUniformwaterfilmUVilluminationtimeContactangleooooooodarkUV61SuperhydrophilicityOxygenvacaPhotocatalyticActivityUltrabandgapirradiationofTiO2
GenerationofelectronholeinvalencebandHolemigratestothesurfaceandresultsinoxidationoforganicmaterialValence
BandConductance
BandOxidationReductionAA+BB-h+hn62PhotocatalyticActivityUltrabSemi-conductorPhotocatalysisA.Mills,SLeHunte,J.Photochem.PhotobiolA,2019,108,1-35.63Semi-conductorPhotocatalysisACVDofActivTMSiO2(30nm)TiO2(17nm)GlassSiH4+O2+C2H4
SiO2+by-productsUsedasbarrierlayertopreventdiffusionofNaionsintoTiO2layerTiCl4+EtOAcTiO2+HCl+organicby-productsLaminarFlowregimeReasonablegrowthratesandprecursorefficiency64CVDofActivTMSiO2(30nm)TiO2ActivTM65ActivTM65ActivTM66ActivTM66ActivTM67ActivTM67Superhydrophilicity15minsUVExposure30minsUVExposure45minsUVExposureBeforeUVExposure68Superhydrophilicity15minsUVPhotocatalyticEffect
UV-AbsorptionO2-OH*OrganicSoilH2O+CO2GlassBarrierLayerTiO2-Layer69PhotocatalyticEffectUV-AbsoPhotocatalyticEffectThephotoactivityofthecoatingcanbemeasuredbymonitoringthedecompositionofastandardcontaminantAthinfilmofstearicacid(n-octadecanoicacid,~200?)isappliedfromamethanolsolutionontothecoatingStearicacidusedasatypicalorganiccontaminantFTIR(Fouriertransforminfra-redspectroscopy)usedtodetectC-HstretchofstearicacidC-HabsorptionintensitymeasuredaftervaryingUVexposure70PhotocatalyticEffectThephotoStearicAcidDecompositionC-HAbsorptionZeroUVexposureC-HAbsorption~60minsUVexposureUV0.77W/m2340nm71StearicAcidDecompositionC-HPilkingtonActivTM72PilkingtonActivTM72SummaryScaleoftheGlobalFlatGlassIndustryManufacturingFlatGlass–FloatGlassProcessCoatingGlass–ChemicalVapourDepositionExamplesofcommercialglazingcoatingspreparedbyCVD73SummaryScaleoftheGlobalFlaRecommendedReadingD.W.SheelandM.E.PembleAtmosphericPressureCVDCoatingsonGlass,ICCG42019
cvdtechnologies.co.uk/CVD%20on%20Glass.pdfM.L.Hitchman,K.F.JensenChemicalVaporDepositionAcademicPress,1993W.S.Rees,CVDofNon-metals,VCH,Weinheim,2019M.OhringTheMaterialsScienceofThinFilms,AcademicPress,2019pilkington74RecommendedReadingD.W.SheelFirstinGlass?75FirstinGlass?75謝謝你的閱讀知識就是財富豐富你的人生謝謝你的閱讀知識就是財富AmemberofNSGGroup77AmemberofNSGGroup1ApplicationofInorganicChemistryinIndustryFlatGlassandCoatingsOnGlassDrTroyManningAdvancedTechnologist,On-lineCoatingsPilkingtonEuropeanTechnicalCentreHallLaneLathomUKtroy.manningpilkington78ApplicationofInorganicChemiOutlineOverviewofFlatGlassindustryandNSG/PilkingtonFlatGlassmanufacture FloatGlassProcessCoatingtechnologywithintheglassindustryChemicalVapourDepositionExamplesofonlinecoatingapplicationsLowEmissivity/SolarControlSelfCleaningSummarySuggestedReading79OutlineOverviewofFlatGlassGlobalFlatGlassMarketGlobalMarket
37milliontonnes(4.4billionsq.m)BuildingProducts33mtonnes-Automotive4mtonnesOfwhich24million=highqualityfloatglass3million=sheet2million=rolled8million=lowerqualityfloat(mostlyChina)
GlobalValue
Atprimarymanufacturelevel€15billionAtprocessedlevel€50billion80GlobalFlatGlassMarketGlobalNSGandPilkingtoncombinedAglobalglassleader–thepureplayinFlatGlassCombinedannualsalesc.£4billionEqualtoAsahiGlassinscale,mostprofitableinFlatGlassOwnership/interestsin46floatlines6.4milliontonnesannualoutputWidenedAutomotivecustomerbase36,000employeesworldwideManufacturingoperationsin26countriesSalesin130+countries81NSGandPilkingtoncombinedAgManufactureofFlatGlassFourmainmethodsPlateGlass(1688)–moltenglasspouredontoaflatbed,spread,cooledandpolishedSheetGlass(1905)–continuoussheetofglassdrawnfromtankofmoltenglassRolledGlass(1920)–moltenglasspouredontototworollerstoachieveaneventhickness,makingpolishingeasier.Usedtomakepatternedandwiredglass.FloatGlass(1959)–moltenglasspouredontobedofmoltentinanddrawnoffincontinuousribbon.Giveshighqualityflatglasswitheventhicknessandfirepolishfinish.~320float-glasslinesworldwide82ManufactureofFlatGlassFourMeltingfurnaceFloatbathCoolinglehrContinuosribbonofglassCrosscuttersLargeplatelift-offdevicesSmallplatelift-offdevicesRawmaterialfeedTheFloat-GlassProcessOperatesnon-stopfor10-15years6000km/year0.4mm-25mmthick,upto3mwide83MeltingfurnaceFloatbathCooliTheFloatGlassProcess84TheFloatGlassProcess8Rawmaterials85Rawmaterials9MeltingFurnace86MeltingFurnace10FloatBath87FloatBath11FloatGlassPlant88FloatGlassPlant12TheFloat-GlassProcessFine-grainedingredients,closelycontrolledforquality,aremixedtomakebatch,whichflowsasablanketontomoltenglassat1500oCinthemelter.Thefurnacecontains2000tonnesofmoltenglass.Afterabout50hours,glassfromthemelterflowsgentlyoverarefractoryspoutontothemirror-likesurfaceofmoltentin,startingat1100oCandleavingthefloatbathasasolidribbonat600oC.Despitethetranquillitywithwhichfloatglassisformed,considerablestressesaredevelopedintheribbonasitcools.89TheFloat-GlassProcessFine-grRawMaterialsOxide %inglassRawmaterialsourceSiO2 72.2 SandNa2O 13.4 SodaAsh(Na2CO3)CaO 8.4 Limestone(CaCO3)MgO 4.0 Dolomite(MgCO3.CaCO3)Al2O3 1.0 Impurityinsand,FeldsparorCalumiteFe2O3 0.11 ImpurityinsandorRouge(Fe2O3)SO3 0.20 SodiumsulphateC 0.00 Anthracite90RawMaterialsOxide %inglRawmaterials
SiO2 Verydurable,BUThighmeltingpoint(>1700°C)!+Na2O Meltsatalowertemperature,BUTdissolvesinwater!+CaO Moredurable,BUTwillnotforminbathwithout crystallisation+MgO Glassstaysasasuper-cooledliquidinbath,no crystallisation+Al2O3 Addsdurability+Fe2O3 Addsrequiredlevelof‘green’colourforcustomer91RawmaterialsSiO2 VerydurablChemistryofGlassImportantglassmakingchemistry:basicreactionsNa2CO3+SiO2
1500oCNa2SiO3+CO2Na2SiO3+xSiO2
Na2SO4(Na2O)(SiO2)(x+1)Digestion92ChemistryofGlassImportantglCompositionofGlass93CompositionofGlass17StructureofGlassRandomnetworkof[SiO4]-tetrahedralunits.Na-OenterSi-Onetworkaccordingtovalency–NetworkFormersCaandMg–NetworkModifiers–makestructuremorecomplextopreventcrystallisation94StructureofGlassRandomnetwoBody-tintedGlassIonResultingColourofGlassFerrous(Fe2+)BlueFerric(Fe3+)YellowFe2++Fe3+GreenSelenium(SeO2)BronzeCobalt(Co2+)Grey/BlueNickel(Ni2+)Grey95Body-tintedGlassIonResultingCIELa*b*colourspace96CIELa*b*colourspace20CIELa*b*colourspace97CIELa*b*colourspace21FunctionsofaWindowLightin–homes,officesLightout–shops,museumdisplaysHeatin–heatingdominatedclimatesHeatout–coolingdominatedclimatesCanchangepropertiesofglassbyapplyingcoatingstothesurface98FunctionsofaWindowLightinMakingawindowfunctional-coatingsAwidevarietyofcoatingtechnologiesareutilisedbytheglassindustrySprayPyrolysisPowderSprayChemicalVapourDepositionSputterCoatingThermalEvaporationCoatingsSolGelCoatings
TheseareappliedOnLinei.e.astheglassisproducedonthefloatlineOffLinei.e.coatingnotnecessarilyproducedatthesamelocation99Makingawindowfunctional-cVariationsofCVDAtmosphericPressure–APCVDLowPressure-LPCVDAerosolAssisted-AACVDMetalorganic–MOCVDCombustion/Flame–CCVDHotWire/Filament–HWCVD/HFCVDPlasmaEnhanced-PECVDLaserAssisted–LACVDMicrowaveAssisted–MWCVDAtomicLayerDeposition–ALD100VariationsofCVDAtmosphericPChemicalVapourDeposition101ChemicalVapourDeposition25ChemicalVapourDepositionMaingasflowregionGasPhaseReactionsSurfaceDiffusionDesorptionofFilmPrecursorByProductsDiffusiontosurface102ChemicalVapourDepositionMainChemicalVapourDepositionAnimationkindlysuppliedbyDr.WarrenCross,UniversityofNottingham103ChemicalVapourDepositionAnimCVDprocessesandparametersProcessParametersTransportPrecursorsGasphasereactionPressure,temperature,flowconditions,boundarylayerthickness,gasphaseconcentration,precursors,carriergasDiffusionPressure,temperature,flowconditions,boundarylayerthickness,gasphaseconcentrationAdsorptionTemperature,gasphaseconcentration,numberandnatureofsitesSurfacereactionTemperature,natureofsurfaceDesorptionofby-productsTemperature,pressure,natureofsurfaceDiffusiontolatticesiteTemperature,surfacemobility,numberofvacantsites104CVDprocessesandparametersPrCVDPrecursorPropertiesVolatile–gas,liquid,lowmeltingpointsolid,sublimablesolidPureStableundertransportReact/Decomposecleanlytogivedesiredcoating–minimisecontaminantsCanbesinglesourceordual/multi-source105CVDPrecursorPropertiesVolatiCVDPrecursorsSingleSource–pyrolysis(thermaldecomposition)e.gTi(OC2H5)4TiO2+4C2H4+2H2O(>400oC)Oxidatione.gSiH4(g)+O2(g)SiO2(s)+2H2(g)Reductione.g.WF6(g)+3H2(g)W(s)+6HF(g)Dualsourcee.g.TiCl4(g)+4EtOH(g)TiO2(s)+4HCl(g)+2EtOEt(g)106CVDPrecursorsSingleSource–DualSourceandSingleSourcePrecursorsFilmDualSourceSingleSourceGaAsGaCl3+AsH3Me2Ga(AsH2)TiNTiCl4+NH3Ti(NMe2)4WSiWCl6+SiH4W(SiR)4TiO2TiCl4+H2OTi(OiPr)4CdSeCdMe2+H2SeCd(SeR)2107DualSourceandSingleSourceTransportofPrecursorsBubblerforliquidsandlowmeltingsolidsDirectLiquidInjection–syringeandsyringedriverforliquidsandsolutionsSublimationforsolids–hotgaspassedoverheatedprecursorAerosolofprecursorsolutions108TransportofPrecursorsBubblerEffectofTemperatureonGrowthRateIndependentoftemperature109EffectofTemperatureonGrowtFlowconditionsLaminarFlowregimeTurbulentFlowRegime110FlowconditionsLaminarFlowreReynoldsNumberDimensionlessnumberdescribingflowconditionsr=Massdensityrelatedtoconcnandpartialpressureu=averagevelocity=viscosityL=relevantlength,relatedtoreactordimensionsIfRe<10LaminarflowIfRe>>1000fullyturbulentflowRealityisbetweenthetwoextremes111ReynoldsNumberDimensionlessnDimensionlessNumbersReducesthenumberofparametersthatdescribeasystemMakesiteasiertodeterminerelationshipsexperimentallyForexample:DragForceonaSphere Variables:Force=f(velocity,diameter,viscosity,density)Canbereducedto2“dimensionlessgroups”: Dragcoefficient(CD)andReynoldsnumber(Re)112DimensionlessNumbersReducestDimensionlessNumbersLaminarflowregimeTurbulentflowregimeExperimentalvaluesofCDforspheresinfluidflowsatvariousRe113DimensionlessNumbersLaminarfBoundaryLayer–gasvelocityFrictionalforcesagainstreactorwallsdecreasegasvelocityTheboundarylayerthicknesscanbeestimatedfrom:114BoundaryLayer–gasvelocityFBoundaryLayer-temperatureContactwithhotsurfacesincreasestemperature115BoundaryLayer-temperatureCoBoundaryLayer–precursorconcentrationDepletionofprecursorde
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 舞蹈藝術(shù)之魅力
- 人事部在企業(yè)戰(zhàn)略中的角色計劃
- 感恩父母與愛同行的演講稿5篇
- 2024年員工三級安全培訓(xùn)考試題(滿分必刷)
- 2023-2024年項目安全培訓(xùn)考試題帶答案(奪分金卷)
- 社團運營與成員發(fā)展
- 《本科心律失?!氛n件
- 教授能量轉(zhuǎn)換守恒
- 北師大版八年級下冊數(shù)學(xué)期末測試題
- 印刷設(shè)備智能化升級-第1篇-洞察分析
- 【安吉物流股份有限公司倉儲管理現(xiàn)狀及問題和優(yōu)化研究15000字(論文)】
- 火災(zāi)自動報警系統(tǒng)施工及驗收調(diào)試報告
- 中國成人血脂異常防治指南課件
- 2023塔式太陽能熱發(fā)電廠集熱系統(tǒng)設(shè)計規(guī)范
- 識別藥用植物種類-識別藥用被子植物
- 滬教版八年級數(shù)學(xué)上冊《后記》教案及教學(xué)反思
- 2023屆高考英語《新課程標準》3000詞總表(字母順序版)素材
- 四川省地圖含市縣地圖矢量分層地圖行政區(qū)劃市縣概況ppt模板-2
- 引水隧洞專項施工方案
- 手機連接打印機
- 知識圖譜知到章節(jié)答案智慧樹2023年浙江大學(xué)
評論
0/150
提交評論