2022年貴州省銅仁地區(qū)普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第1頁
2022年貴州省銅仁地區(qū)普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第2頁
2022年貴州省銅仁地區(qū)普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第3頁
2022年貴州省銅仁地區(qū)普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第4頁
2022年貴州省銅仁地區(qū)普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022年貴州省銅仁地區(qū)普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(20題)1.A.sin(2x-1)+C

B.

C.-sin(2x-1)+C

D.

2.

3.

4.().A.A.單調(diào)增加且為凹B.單調(diào)增加且為凸C.單調(diào)減少且為凹D.單調(diào)減少且為凸

5.

6.設(shè)z=x2+y2,dz=()。

A.2ex2+y2(xdx+ydy)

B.2ex2+y2(zdy+ydx)

C.ex2+y2(xdx+ydy)

D.2ex2+y2(dx2+dy2)

7.

8.設(shè)f(xo)=0,f(xo)<0,則下列結(jié)論中必定正確的是

A.xo為f(x)的極大值點(diǎn)

B.xo為f(x)的極小值點(diǎn)

C.xo不為f(x)的極值點(diǎn)

D.xo可能不為f(x)的極值點(diǎn)

9.

10.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是()。A.

B.

C.

D.

11.曲線Y=x-3在點(diǎn)(1,1)處的切線的斜率為().

A.-1

B.-2

C.-3

D.-4

12.曲線y=x-ex在點(diǎn)(0,-1)處切線的斜率k=A.A.2B.1C.0D.-1

13.設(shè)函數(shù)f(x)=2sinx,則f'(x)等于().A.A.2sinxB.2cosxC.-2sinxD.-2cosx.

14.當(dāng)x→0時(shí),3x是x的().

A.高階無窮小量B.等價(jià)無窮小量C.同階無窮小量,但不是等價(jià)無窮小量D.低階無窮小量

15.

16.下列關(guān)于動(dòng)載荷的敘述不正確的一項(xiàng)是()。

A.動(dòng)載荷和靜載荷的本質(zhì)區(qū)別是前者構(gòu)件內(nèi)各點(diǎn)的加速度必須考慮,而后者可忽略不計(jì)

B.勻速直線運(yùn)動(dòng)時(shí)的動(dòng)荷因數(shù)為

C.自由落體沖擊時(shí)的動(dòng)荷因數(shù)為

D.增大靜變形是減小沖擊載荷的主要途徑

17.若f(x)為[a,b]上的連續(xù)函數(shù),()。A.小于0B.大于0C.等于0D.不確定

18.()。A.-2B.-1C.0D.2

19.A.a=-9,b=14B.a=1,b=-6C.a=-2,b=0D.a=12,b=-5

20.

A.

B.

C.

D.

二、填空題(20題)21.設(shè)y=cosx,則y'=______

22.

23.

24.

25.級數(shù)的收斂區(qū)間為______.

26.

27.

28.微分方程y'=2的通解為__________。

29.通解為C1e-x+C2e-2x的二階常系數(shù)線性齊次微分方程是____.

30.過M0(1,-1,2)且垂直于平面2x-y+3z-1=0的直線方程為.

31.

32.微分方程y"+y'=0的通解為______.

33.

34.

35.

36.

37.

38.

39.

40.

三、計(jì)算題(20題)41.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

42.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

43.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

44.

45.求微分方程y"-4y'+4y=e-2x的通解.

46.

47.

48.求曲線在點(diǎn)(1,3)處的切線方程.

49.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

50.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則

51.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

52.

53.求微分方程的通解.

54.

55.將f(x)=e-2X展開為x的冪級數(shù).

56.證明:

57.

58.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

59.

60.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

四、解答題(10題)61.

62.求由曲線y2=(x-1)3和直線x=2所圍成的圖形繞x軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體的體積.

63.

64.

65.

66.設(shè)z=z(x,y)由x2+2y2+3z2+yz=1確定,求

67.

68.

69.設(shè)函數(shù)f(x)=ax3+bx2+cx+d,問常數(shù)a,b,c滿足什么關(guān)系時(shí),f(x)分別沒有極值、可能有一個(gè)極值、可能有兩個(gè)極值?

70.

五、高等數(shù)學(xué)(0題)71.設(shè)

則∫f(x)dx等于()。

A.2x+c

B.1nx+c

C.

D.

六、解答題(0題)72.求函數(shù)y=xex的極小值點(diǎn)與極小值。

參考答案

1.B本題考查的知識點(diǎn)為不定積分換元積分法。

因此選B。

2.D解析:

3.D

4.B本題考查的知識點(diǎn)為利用一階導(dǎo)數(shù)符號判定函數(shù)的單調(diào)性和利用二階導(dǎo)數(shù)符號判定曲線的凹凸性.

5.A

6.A∵z=ex+y∴z"=ex2+y22x;zy"=ex2+y22y∴dz=ex2+y22xdx+ex2+y22ydy

7.A解析:

8.A

9.A

10.C

11.C點(diǎn)(1,1)在曲線.由導(dǎo)數(shù)的幾何意義可知,所求切線的斜率為-3,因此選C.

12.C

13.B本題考查的知識點(diǎn)為導(dǎo)數(shù)的運(yùn)算.

f(x)=2sinx,

f'(x)=2(sinx)'=2cosx,

可知應(yīng)選B.

14.C本題考查的知識點(diǎn)為無窮小量階的比較.

應(yīng)依定義考察

由此可知,當(dāng)x→0時(shí),3x是x的同階無窮小量,但不是等價(jià)無窮小量,故知應(yīng)選C.

本題應(yīng)明確的是:考察當(dāng)x→x0時(shí)無窮小量β與無窮小量α的階的關(guān)系時(shí),要判定極限

這里是以α為“基本量”,考生要特別注意此點(diǎn),才能避免錯(cuò)誤.

15.D解析:

16.C

17.C

18.A

19.B

20.D本題考查的知識點(diǎn)為導(dǎo)數(shù)運(yùn)算.

因此選D.

21.-sinx

22.(02)(0,2)解析:

23.

24.

25.(-1,1)本題考查的知識點(diǎn)為求冪級數(shù)的收斂區(qū)間.

所給級數(shù)為不缺項(xiàng)情形.

可知收斂半徑,因此收斂區(qū)間為

(-1,1).

注:《綱》中指出,收斂區(qū)間為(-R,R),不包括端點(diǎn).

本題一些考生填1,這是誤將收斂區(qū)間看作收斂半徑,多數(shù)是由于考試時(shí)過于緊張而導(dǎo)致的錯(cuò)誤.

26.1

27.解析:

28.y=2x+C

29.

30.

本題考查的知識點(diǎn)為直線方程的求解.

由于所求直線與平面垂直,因此直線的方向向量s可取為已知平面的法向量n=(2,-1,3).

由直線的點(diǎn)向式方程可知所求直線方程為

31.

32.y=C1+C2e-x,其中C1,C2為任意常數(shù)本題考查的知識點(diǎn)為二階線性常系數(shù)齊次微分方程的求解.

二階線性常系數(shù)齊次微分方程求解的一般步驟為:先寫出特征方程,求出特征根,再寫出方程的通解.

微分方程為y"+y'=0.

特征方程為r3+r=0.

特征根r1=0.r2=-1.

因此所給微分方程的通解為

y=C1+C2e-x,

其牛C1,C2為任意常數(shù).

33.

34.

35.

36.2xy(x+y)+3

37.y=-e-x+C

38.

39.5.

本題考查的知識點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).

解法1

解法2

40.

41.

42.

43.

44.

45.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

46.

47.

48.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

49.

列表:

說明

50.由等價(jià)無窮小量的定義可知

51.由二重積分物理意義知

52.

53.

54.

55.

56.

57.由一階線性微分方程通解公式有

58.函數(shù)的定義域?yàn)?/p>

注意

59.

60.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

61.

本題考查的知

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論