2023年山西省忻州市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2023年山西省忻州市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2023年山西省忻州市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2023年山西省忻州市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2023年山西省忻州市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年山西省忻州市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.A.a=-9,b=14B.a=1,b=-6C.a=-2,b=0D.a=12,b=-5

3.

4.設(shè)函數(shù)f(x)=2lnx+ex,則f'(2)等于

A.eB.1C.1+e2

D.ln2

5.

6.某技術(shù)專(zhuān)家,原來(lái)從事專(zhuān)業(yè)工作,業(yè)務(wù)精湛,績(jī)效顯著,近來(lái)被提拔到所在科室負(fù)責(zé)人的崗位。隨著工作性質(zhì)的轉(zhuǎn)變,他今后應(yīng)當(dāng)注意把自己的工作重點(diǎn)調(diào)整到()

A.放棄技術(shù)工作,全力以赴,抓好管理和領(lǐng)導(dǎo)工作

B.重點(diǎn)仍以技術(shù)工作為主,以自身為榜樣帶動(dòng)下級(jí)

C.以抓管理工作為主,同時(shí)參與部分技術(shù)工作,以增強(qiáng)與下級(jí)的溝通和了解

D.在抓好技術(shù)工作的同時(shí),做好管理工作

7.

8.設(shè)函數(shù)f(x)在點(diǎn)x0。處連續(xù),則下列結(jié)論正確的是().A.A.

B.

C.

D.

9.函數(shù)y=f(x)在(a,b)內(nèi)二階可導(dǎo),且f'(x)>0,f"(x)<0,則曲線(xiàn)y=f(x)在(a,b)內(nèi)().

A.單調(diào)增加且為凹B.單調(diào)增加且為凸C.單調(diào)減少且為凹D.單調(diào)減少且為凸

10.

11.方程2x2-y2=1表示的二次曲面是().A.A.球面B.柱面C.旋轉(zhuǎn)拋物面D.圓錐面

12.()。A.3B.2C.1D.0

13.曲線(xiàn)y=x-3在點(diǎn)(1,1)處的切線(xiàn)斜率為()

A.-1B.-2C.-3D.-4

14.

A.

B.

C.

D.

15.用多頭鉆床在水平放置的工件上同時(shí)鉆四個(gè)直徑相同的孔,如圖所示,每個(gè)鉆頭的切屑力偶矩為M1=M2=M3=M4=一15N·m,則工件受到的總切屑力偶矩為()。

A.30N·m,逆時(shí)針?lè)较駼.30N·m,順時(shí)針?lè)较駽.60N·m,逆時(shí)針?lè)较駾.60N·m,順時(shí)針?lè)较?/p>

16.

17.A.A.1

B.

C.m

D.m2

18.

19.A.A.

B.B.

C.C.

D.D.

20.下列說(shuō)法中不能提高梁的抗彎剛度的是()。

A.增大梁的彎度B.增加梁的支座C.提高梁的強(qiáng)度D.增大單位面積的抗彎截面系數(shù)

二、填空題(20題)21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.設(shè)z=2x+y2,則dz=______。

33.過(guò)點(diǎn)(1,-1,0)且與直線(xiàn)平行的直線(xiàn)方程為_(kāi)_____。

34.

35.

36.

37.設(shè)y=x2+e2,則dy=________

38.

39.

40.

三、計(jì)算題(20題)41.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).

42.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則

43.

44.

45.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

46.設(shè)拋物線(xiàn)Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線(xiàn)與x軸所圍成的平面區(qū)域內(nèi),以線(xiàn)段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

47.

48.求微分方程的通解.

49.

50.

51.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線(xiàn)在點(diǎn)(1,1)處的切線(xiàn)l的方程.

52.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

53.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

54.

55.證明:

56.求微分方程y"-4y'+4y=e-2x的通解.

57.

58.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

59.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線(xiàn)的凹凸區(qū)間和拐點(diǎn).

60.求曲線(xiàn)在點(diǎn)(1,3)處的切線(xiàn)方程.

四、解答題(10題)61.設(shè)z=z(x,y)由方程ez-xy2+x+z=0確定,求dz.

62.

63.已知曲線(xiàn)C的方程為y=3x2,直線(xiàn)ι的方程為y=6x。求由曲線(xiàn)C與直線(xiàn)ι圍成的平面圖形的面積S。

64.

65.

66.

67.

68.

69.

70.

五、高等數(shù)學(xué)(0題)71.求極限

六、解答題(0題)72.

參考答案

1.A

2.B

3.D解析:

4.C本題考查了函數(shù)在一點(diǎn)的導(dǎo)數(shù)的知識(shí)點(diǎn).

因f(x)=2lnx+ex,于是f'(x)=2/x+ex,故f'(2)=1+e2.

5.B解析:

6.C

7.D

8.D本題考查的知識(shí)點(diǎn)為連續(xù)性的定義,連續(xù)性與極限、可導(dǎo)性的關(guān)系.由函數(shù)連續(xù)性的定義:若在x0處f(x)連續(xù),則可知選項(xiàng)D正確,C不正確.由于連續(xù)性并不能保證f(x)的可導(dǎo)性,可知A不正確.

9.B解析:本題考查的知識(shí)點(diǎn)為利用一階導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性和利用二階導(dǎo)數(shù)符號(hào)判定曲線(xiàn)的凹凸性.

由于在(a,b)內(nèi)f'(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,又由于f"(x)<0,可知曲線(xiàn)y=f(x)在(a,b)內(nèi)為凹,可知應(yīng)選B.

10.D

11.B本題考查的知識(shí)點(diǎn)為識(shí)別二次曲面方程.

由于二次曲面的方程中缺少一個(gè)變量,因此它為柱面方程,應(yīng)選B.

12.A

13.C由導(dǎo)數(shù)的幾何意義知,若y=f(x)可導(dǎo),則曲線(xiàn)在點(diǎn)(x0,f(x0))處必定存在切線(xiàn),且該切線(xiàn)的斜率為f"(x0)。由于y=x-3,y"=-3x-4,y"|x=1=-3,可知曲線(xiàn)y=x-3在點(diǎn)(1,1)處的切線(xiàn)斜率為-3,故選C。

14.B本題考查的知識(shí)點(diǎn)為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。

15.D

16.C

17.D本題考查的知識(shí)點(diǎn)為重要極限公式或等價(jià)無(wú)窮小量代換.

解法1

解法2

18.C

19.C本題考查了二重積分的積分區(qū)域的表示的知識(shí)點(diǎn).

20.A

21.

22.

23.

24.2

25.

26.

27.

28.1/2本題考查了對(duì)∞-∞型未定式極限的知識(shí)點(diǎn),

29.6.

本題考查的知識(shí)點(diǎn)為無(wú)窮小量階的比較.

30.-2

31.2

32.2dx+2ydy

33.本題考查的知識(shí)點(diǎn)為直線(xiàn)的方程和直線(xiàn)與直線(xiàn)的關(guān)系。由于兩條直線(xiàn)平行的充分必要條件為它們的方向向量平行,因此可取所求直線(xiàn)的方向向量為(2,1,-1).由直線(xiàn)的點(diǎn)向式方程可知所求直線(xiàn)方程為

34.

解析:

35.

36.3x2

37.(2x+e2)dx

38.

39.[*]

40.

本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).

41.

42.由等價(jià)無(wú)窮小量的定義可知

43.

44.由一階線(xiàn)性微分方程通解公式有

45.由二重積分物理意義知

46.

47.

48.

49.

50.

51.

52.

53.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

54.

55.

56.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

57.

58.函數(shù)的定義域?yàn)?/p>

注意

59.

列表:

說(shuō)明

60.曲線(xiàn)方程為,點(diǎn)(1,3)在曲線(xiàn)上.

因此所求曲線(xiàn)方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線(xiàn)y=f(x)在點(diǎn)

(x0,fx0))處存在切線(xiàn),且切線(xiàn)的斜率為f′(x0).切線(xiàn)方程為

61.

62.

63.

64.

65.

66.

67.

68.解

69.

70.用極坐標(biāo)解(積分區(qū)域和被積函數(shù)均適宜用極坐標(biāo)處理).

71.

72.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分;選擇積分次序或利用極坐標(biāo)計(jì)算.

積分區(qū)域D如圖2—1所示.

解法1利用極坐標(biāo)系.

D可以表示為

解法2利

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論