版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,A、B、C是⊙O上的三點,∠BAC=30°,則∠BOC的大小是()A.30° B.60° C.90° D.45°2.下列二次函數(shù)的圖象,不能通過函數(shù)y=3x2的圖象平移得到的是(
)A.y=3x2+2 B.y=3(x﹣1)2 C.y=3(x﹣1)2+2 D.y=2x23.如圖,將一塊含有30°角的直角三角板的兩個頂點放在長方形直尺的一組對邊上,如果∠1=30°,那么∠2的度數(shù)為()A.30° B.40° C.50° D.60°4.如圖,在邊長為6的菱形中,,以點為圓心,菱形的高為半徑畫弧,交于點,交于點,則圖中陰影部分的面積是()A. B. C. D.5.拋物線經(jīng)過第一、三、四象限,則拋物線的頂點必在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.實數(shù)a,b,c在數(shù)軸上對應(yīng)點的位置如圖所示,則下列結(jié)論中正確的是()A.a(chǎn)+c>0 B.b+c>0 C.a(chǎn)c>bc D.a(chǎn)﹣c>b﹣c7.現(xiàn)有兩根木棒,它們的長分別是20cm和30cm,若不改變木棒的長短,要釘成一個三角形木架,則應(yīng)在下列四根木棒中選?。ǎ〢.10cm的木棒 B.40cm的木棒 C.50cm的木棒 D.60cm的木棒8.下列計算正確的是A. B. C. D.9.如圖,點A、B在數(shù)軸上表示的數(shù)的絕對值相等,且,那么點A表示的數(shù)是A. B. C. D.310.如圖,在△ABC中,分別以點A和點C為圓心,大于AC長為半徑畫弧,兩弧相交于點M,N,作直線MN分別交BC,AC于點D,E,若AE=3cm,△ABD的周長為13cm,則△ABC的周長為()A.16cm B.19cm C.22cm D.25cm11.在,,則的值為()A. B. C. D.12.如圖,直線AB∥CD,則下列結(jié)論正確的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若正多邊形的一個內(nèi)角等于140°,則這個正多邊形的邊數(shù)是_______.14.將一個含45°角的三角板,如圖擺放在平面直角坐標系中,將其繞點順時針旋轉(zhuǎn)75°,點的對應(yīng)點恰好落在軸上,若點的坐標為,則點的坐標為____________.15.如圖,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延長線于點F,若AD=1,BD=2,BC=4,則EF=________.16.對于實數(shù)a,b,定義運算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=1.若(x+1)※(x﹣2)=6,則x的值為_____.17.不等式組的整數(shù)解是_____.18.若分式的值為正數(shù),則x的取值范圍_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某校初三體育考試選擇項目中,選擇籃球項目和排球項目的學生比較多.為了解學生掌握籃球技巧和排球技巧的水平情況,進行了抽樣調(diào)查,過程如下,請補充完整.收集數(shù)據(jù):從選擇籃球和排球的學生中各隨機抽取16人,進行了體育測試,測試成績(十分制)如下:排球109.59.510899.5971045.5109.59.510籃球9.598.58.5109.510869.5109.598.59.56整理、描述數(shù)據(jù):按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù):(說明:成績8.5分及以上為優(yōu)秀,6分及以上為合格,6分以下為不合格)分析數(shù)據(jù):兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:項目平均數(shù)中位數(shù)眾數(shù)排球8.759.510籃球8.819.259.5得出結(jié)論:(1)如果全校有160人選擇籃球項目,達到優(yōu)秀的人數(shù)約為_________人;(2)初二年級的小明和小軍看到上面數(shù)據(jù)后,小明說:排球項目整體水平較高.小軍說:籃球項目整體水平較高.你同意_______的看法,理由為____________________________.(至少從兩個不同的角度說明推斷的合理性)20.(6分)北京時間2019年3月10日0時28分,我國在西昌衛(wèi)星發(fā)射中心用長征三號乙運載火箭,成功將中星衛(wèi)星發(fā)射升空,衛(wèi)星進入預(yù)定軌道.如圖,火星從地面處發(fā)射,當火箭達到點時,從位于地面雷達站處測得的距離是,仰角為;1秒后火箭到達點,測得的仰角為.(參考數(shù)據(jù):sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)求發(fā)射臺與雷達站之間的距離;求這枚火箭從到的平均速度是多少(結(jié)果精確到0.01)?21.(6分)某制衣廠某車間計劃用10天加工一批出口童裝和成人裝共360件,該車間的加工能力是:每天能單獨加工童裝45件或成人裝30件.(1)該車間應(yīng)安排幾天加工童裝,幾天加工成人裝,才能如期完成任務(wù);(2)若加工童裝一件可獲利80元,加工成人裝一件可獲利120元,那么該車間加工完這批服裝后,共可獲利多少元.22.(8分)如圖:△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°求證:(1)△PAC∽△BPD;(2)若AC=3,BD=1,求CD的長.23.(8分)如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P是直線AC下方拋物線上的動點.(1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.24.(10分)某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學生飲用.某校為了了解學生對不同口味的牛奶的喜好,對全校訂牛奶的學生進行了隨機調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.根據(jù)統(tǒng)計圖的信息解決下列問題:(1)本次調(diào)查的學生有多少人?(2)補全上面的條形統(tǒng)計圖;(3)扇形統(tǒng)計圖中C對應(yīng)的中心角度數(shù)是;(4)若該校有600名學生訂了該品牌的牛奶,每名學生每天只訂一盒牛奶,要使學生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?25.(10分)如圖,兩座建筑物的水平距離為.從點測得點的仰角為53°,從點測得點的俯角為37°,求兩座建筑物的高度(參考數(shù)據(jù):26.(12分)請根據(jù)圖中提供的信息,回答下列問題:一個水瓶與一個水杯分別是多少元?甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和n(n>10,且n為整數(shù))個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)27.(12分)如圖,已知AB是⊙O的弦,C是的中點,AB=8,AC=,求⊙O半徑的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】【分析】欲求∠BOC,又已知一圓周角∠BAC,可利用圓周角與圓心角的關(guān)系求解.【詳解】∵∠BAC=30°,∴∠BOC=2∠BAC=60°(同弧所對的圓周角是圓心角的一半),故選B.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.2、D【解析】分析:根據(jù)平移變換只改變圖形的位置不改變圖形的形狀與大小對各選項分析判斷后利用排除法求解:A、y=3x2的圖象向上平移2個單位得到y(tǒng)=3x2+2,故本選項錯誤;B、y=3x2的圖象向右平移1個單位得到y(tǒng)=3(x﹣1)2,故本選項錯誤;C、y=3x2的圖象向右平移1個單位,向上平移2個單位得到y(tǒng)=3(x﹣1)2+2,故本選項錯誤;D、y=3x2的圖象平移不能得到y(tǒng)=2x2,故本選項正確.故選D.3、D【解析】如圖,因為,∠1=30°,∠1+∠3=60°,所以∠3=30°,因為AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故選D.4、B【解析】
由菱形的性質(zhì)得出AD=AB=6,∠ADC=120°,由三角函數(shù)求出菱形的高DF,圖中陰影部分的面積=菱形ABCD的面積-扇形DEFG的面積,根據(jù)面積公式計算即可.【詳解】∵四邊形ABCD是菱形,∠DAB=60°,
∴AD=AB=6,∠ADC=180°-60°=120°,
∵DF是菱形的高,
∴DF⊥AB,
∴DF=AD?sin60°=6×=3,
∴陰影部分的面積=菱形ABCD的面積-扇形DEFG的面積=6×3=18-9π.
故選B.【點睛】本題考查了菱形的性質(zhì)、三角函數(shù)、菱形和扇形面積的計算;由三角函數(shù)求出菱形的高是解決問題的關(guān)鍵.5、A【解析】
根據(jù)二次函數(shù)圖象所在的象限大致畫出圖形,由此即可得出結(jié)論.【詳解】∵二次函數(shù)圖象只經(jīng)過第一、三、四象限,∴拋物線的頂點在第一象限.故選A.【點睛】本題考查了二次函數(shù)的性質(zhì)以及二次函數(shù)的圖象,大致畫出函數(shù)圖象,利用數(shù)形結(jié)合解決問題是解題的關(guān)鍵.6、D【解析】分析:根據(jù)圖示,可得:c<b<0<a,,據(jù)此逐項判定即可.詳解:∵c<0<a,|c|>|a|,∴a+c<0,∴選項A不符合題意;∵c<b<0,∴b+c<0,∴選項B不符合題意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴選項C不符合題意;∵a>b,∴a﹣c>b﹣c,∴選項D符合題意.故選D.點睛:此題考查了數(shù)軸,考查了有理數(shù)的大小比較關(guān)系,考查了不等關(guān)系與不等式.熟記有理數(shù)大小比較法則,即正數(shù)大于0,負數(shù)小于0,正數(shù)大于一切負數(shù).7、B【解析】
設(shè)應(yīng)選取的木棒長為x,再根據(jù)三角形的三邊關(guān)系求出x的取值范圍.進而可得出結(jié)論.【詳解】設(shè)應(yīng)選取的木棒長為x,則30cm-20cm<x<30cm+20cm,即10cm<x<50cm.故選B.【點睛】本題考查的是三角形的三邊關(guān)系,熟知三角形任意兩邊之和大于第三邊,任意兩邊差小于第三邊是解答此題的關(guān)鍵.8、C【解析】
根據(jù)同類項的定義、同底數(shù)冪的除法、單項式乘單項式法則和積的乘方逐一判斷即可.【詳解】、與不是同類項,不能合并,此選項錯誤;、,此選項錯誤;、,此選項正確;、,此選項錯誤.故選:.【點睛】此題考查的是整式的運算,掌握同類項的定義、同底數(shù)冪的除法、單項式乘單項式法則和積的乘方是解決此題的關(guān)鍵.9、B【解析】
如果點A,B表示的數(shù)的絕對值相等,那么AB的中點即為坐標原點.【詳解】解:如圖,AB的中點即數(shù)軸的原點O.
根據(jù)數(shù)軸可以得到點A表示的數(shù)是.
故選:B.【點睛】此題考查了數(shù)軸有關(guān)內(nèi)容,用幾何方法借助數(shù)軸來求解,非常直觀,體現(xiàn)了數(shù)形結(jié)合的優(yōu)點確定數(shù)軸的原點是解決本題的關(guān)鍵.10、B【解析】
根據(jù)作法可知MN是AC的垂直平分線,利用垂直平分線的性質(zhì)進行求解即可得答案.【詳解】解:根據(jù)作法可知MN是AC的垂直平分線,∴DE垂直平分線段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周長=AB+BD+BC+AC=13+6=19cm,故選B.【點睛】本題考查作圖-基本作圖,線段的垂直平分線的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握線段的垂直平分線的性質(zhì).11、A【解析】
本題可以利用銳角三角函數(shù)的定義求解即可.【詳解】解:tanA=,
∵AC=2BC,
∴tanA=.
故選:A.【點睛】本題考查了正切函數(shù)的概念,掌握直角三角形中角的對邊與鄰邊的比是關(guān)鍵.12、D【解析】分析:依據(jù)AB∥CD,可得∠3+∠5=180°,再根據(jù)∠5=∠4,即可得出∠3+∠4=180°.詳解:如圖,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故選D.點睛:本題考查了平行線的性質(zhì),解題時注意:兩直線平行,同旁內(nèi)角互補.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】試題分析:此題主要考查了多邊形的外角與內(nèi)角,做此類題目,首先求出正多邊形的外角度數(shù),再利用外角和定理求出求邊數(shù).首先根據(jù)求出外角度數(shù),再利用外角和定理求出邊數(shù).∵正多邊形的一個內(nèi)角是140°,∴它的外角是:180°-140°=40°,360°÷40°=1.故答案為1.考點:多邊形內(nèi)角與外角.14、【解析】
先求得∠ACO=60°,得出∠OAC=30°,求得AC=2OC=2,解等腰直角三角形求得直角邊為,從而求出B′的坐標.【詳解】解:∵∠ACB=45°,∠BCB′=75°,
∴∠ACB′=120°,
∴∠ACO=60°,
∴∠OAC=30°,
∴AC=2OC,
∵點C的坐標為(1,0),
∴OC=1,
∴AC=2OC=2,
∵△ABC是等腰直角三角形,∴B′點的坐標為【點睛】此題主要考查了旋轉(zhuǎn)的性質(zhì)及坐標與圖形變換,同時也利用了直角三角形性質(zhì),首先利用直角三角形的性質(zhì)得到有關(guān)線段的長度,即可解決問題.15、【解析】
由DE∥BC可得出△ADE∽△ABC,根據(jù)相似三角形的性質(zhì)和平行線的性質(zhì)解答即可.【詳解】∵DE∥BC,∴∠F=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DB=DF,∵DE∥BC,∴△ADE∽△ABC,∴,即,解得:DE=,∵DF=DB=2,∴EF=DF-DE=2-=,故答案為.【點睛】此題考查相似三角形的判定和性質(zhì),關(guān)鍵是由DE∥BC可得出△ADE∽△ABC.16、2【解析】
根據(jù)新定義運算對式子進行變形得到關(guān)于x的方程,解方程即可得解.【詳解】由題意得,(x+2)2﹣(x+2)(x﹣2)=6,整理得,3x+3=6,解得,x=2,故答案為2.【點睛】本題考查了解方程,涉及到完全平方公式、多項式乘法的運算等,根據(jù)題意正確得到方程是解題的關(guān)鍵.17、﹣1、0、1【解析】
求出每個不等式的解集,根據(jù)找不等式組解集的規(guī)律找出不等式組的解集,即可得出答案.【詳解】,解不等式得:,解不等式得:,不等式組的解集為,不等式組的整數(shù)解為-1,0,1.故答案為:-1,0,1.【點睛】本題考查的知識點是一元一次不等式組的整數(shù)解,解題關(guān)鍵是注意解集范圍從而得出整數(shù)解.18、x>1【解析】試題解析:由題意得:>0,∵-6<0,∴1-x<0,∴x>1.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、130小明平均數(shù)接近,而排球成績的中位數(shù)和眾數(shù)都較高.【解析】
根據(jù)抽取的16人中成績達到優(yōu)秀的百分比,即可得到全校達到優(yōu)秀的人數(shù);根據(jù)平均數(shù)接近,而排球成績的中位數(shù)和眾數(shù)都較高,即可得到結(jié)論.【詳解】解:補全表格成績:人數(shù)項目10排球11275籃球021103達到優(yōu)秀的人數(shù)約為(人);故答案為130;同意小明的看法,理由為:平均數(shù)接近,而排球成績的中位數(shù)和眾數(shù)都較高答案不唯一,理由需支持判斷結(jié)論故答案為小明,平均數(shù)接近,而排球成績的中位數(shù)和眾數(shù)都較高.【點睛】本題考查眾數(shù)、中位數(shù),平均數(shù)的應(yīng)用,解題的關(guān)鍵是掌握眾數(shù)、中位數(shù)、平均數(shù)的定義以及用樣本估計總體.20、(Ⅰ)發(fā)射臺與雷達站之間的距離約為;(Ⅱ)這枚火箭從到的平均速度大約是.【解析】
(Ⅰ)在Rt△ACD中,根據(jù)銳角三角函數(shù)的定義,利用∠ADC的余弦值解直角三角形即可;(Ⅱ)在Rt△BCD和Rt△ACD中,利用∠BDC的正切值求出BC的長,利用∠ADC的正弦值求出AC的長,進而可得AB的長,即可得答案.【詳解】(Ⅰ)在中,,≈0.74,∴.答:發(fā)射臺與雷達站之間的距離約為.(Ⅱ)在中,,∴.∵在中,,∴.∴.答:這枚火箭從到的平均速度大約是.【點睛】本題考查解直角三角形的應(yīng)用,熟練掌握銳角三角函數(shù)的定義是解題關(guān)鍵.21、(1)該車間應(yīng)安排4天加工童裝,6天加工成人裝;(2)36000元.【解析】
(1)利用某車間計劃用10天加工一批出口童裝和成人裝共360件,分別得出方程組成方程組求出即可;(2)利用(1)中所求,分別得出兩種服裝獲利即可得出答案.【詳解】解:(1)設(shè)該車間應(yīng)安排x天加工童裝,y天加工成人裝,由題意得:,解得:,答:該車間應(yīng)安排4天加工童裝,6天加工成人裝;(2)∵45×4=180,30×6=180,∴180×80+180×120=180×(80+120)=36000(元),答:該車間加工完這批服裝后,共可獲利36000元.【點睛】本題考查二元一次方程組的應(yīng)用.22、(1)見解析;(2)6.【解析】
(1)由△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,可得∠PAB=∠PBD,∠BPD=∠PAC,從而即可證明;
(2)根據(jù)相似三角形對應(yīng)邊成比例即可求出PC=PD=3,再由勾股定理即可求解.【詳解】證明:(1)∵△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,∴∠APC+∠BPD=45°,
又∠PAB+∠PBA=45°,∠PBA+∠PBD=45°,∴∠PAB=∠PBD,∠BPD=∠PAC,
∵∠PCA=∠PDB,∴△PAC∽△BPD;
(2)∵ACPD=PCBD,PC=PD,AC=3,BD=1
∴PC=PD=【點睛】本題考查了相似三角形的判定與性質(zhì)及等腰直角三角形,屬于基礎(chǔ)題,關(guān)鍵是掌握相似三角形的判定方法.23、(1)拋物線的解析式為y=x2-2x+1,(2)四邊形AECP的面積的最大值是,點P(,﹣);(3)Q(4,1)或(-3,1).【解析】
(1)把點A,B的坐標代入拋物線的解析式中,求b,c;(2)設(shè)P(m,m2?2m+1),根據(jù)S四邊形AECP=S△AEC+S△APC,把S四邊形AECP用含m式子表示,根據(jù)二次函數(shù)的性質(zhì)求解;(3)設(shè)Q(t,1),分別求出點A,B,C,P的坐標,求出AB,BC,CA;用含t的式子表示出PQ,CQ,判斷出∠BAC=∠PCA=45°,則要分兩種情況討論,根據(jù)相似三角形的對應(yīng)邊成比例求t.【詳解】解:(1)將A(0,1),B(9,10)代入函數(shù)解析式得:×81+9b+c=10,c=1,解得b=?2,c=1,所以拋物線的解析式y(tǒng)=x2?2x+1;(2)∵AC∥x軸,A(0,1),∴x2?2x+1=1,解得x1=6,x2=0(舍),即C點坐標為(6,1),∵點A(0,1),點B(9,10),∴直線AB的解析式為y=x+1,設(shè)P(m,m2?2m+1),∴E(m,m+1),∴PE=m+1?(m2?2m+1)=?m2+3m.∵AC⊥PE,AC=6,∴S四邊形AECP=S△AEC+S△APC=AC?EF+AC?PF=AC?(EF+PF)=AC?EP=×6(?m2+3m)=?m2+9m.∵0<m<6,∴當m=時,四邊形AECP的面積最大值是,此時P();(3)∵y=x2?2x+1=(x?3)2?2,P(3,?2),PF=y(tǒng)F?yp=3,CF=xF?xC=3,∴PF=CF,∴∠PCF=45°,同理可得∠EAF=45°,∴∠PCF=∠EAF,∴在直線AC上存在滿足條件的點Q,設(shè)Q(t,1)且AB=,AC=6,CP=,∵以C,P,Q為頂點的三角形與△ABC相似,①當△CPQ∽△ABC時,CQ:AC=CP:AB,(6?t):6=,解得t=4,所以Q(4,1);②當△CQP∽△ABC時,CQ:AB=CP:AC,(6?t)6,解得t=?3,所以Q(?3,1).綜上所述:當點P為拋物線的頂點時,在直線AC上存在點Q,使得以C,P,Q為頂點的三角形與△ABC相似,Q點的坐標為(4,1)或(?3,1).【點睛】本題考查了二次函數(shù)綜合題,解(1)的關(guān)鍵是待定系數(shù)法;解(2)的關(guān)鍵是利用面積的和差得出二次函數(shù),又利用了二次函數(shù)的性質(zhì),平行于坐標軸的直線上兩點間的距離是較大的坐標減較小的坐標;解(3)的關(guān)鍵是利用相似三角形的性質(zhì)的出關(guān)于CQ的比例,要分類討論,以防遺漏.24、(1)150人;(2)補圖見解析;(3)144°;(4)300盒.【解析】
(1)根據(jù)喜好A口味的牛奶的學生人數(shù)和所占百分比,即可求出本次調(diào)查的學生數(shù).(2)用調(diào)查總?cè)藬?shù)減去A、B、D三種喜好不同口味牛奶的人數(shù),求出喜好C口味牛奶的人數(shù),補全統(tǒng)計圖.再用360°乘以喜好C口味的牛奶人數(shù)所占百分比求出對應(yīng)中心角度數(shù).(3)用總?cè)藬?shù)乘以A、B口味牛奶喜歡人數(shù)所占的百分比得出答案.【詳解】解:(1)本次調(diào)查的學生有30÷20%=150人;(2)C類別人數(shù)為150﹣(30+45+15)=60人,補全條形圖如下:(3)扇形統(tǒng)計圖中C對應(yīng)的中心角度數(shù)是360°×=144°故答案為144°(4)600×()=300(人),答:該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約300盒.【點睛
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年贛州環(huán)保工程承包合同
- 2024年版電子競技賽事組織合同
- 2024年美術(shù)培訓學校聘請美術(shù)教學研究專家服務(wù)協(xié)議3篇
- 2025版汽車抵押貸款服務(wù)專項合同
- 2024年甲乙雙方關(guān)于新能源汽車充電設(shè)施建設(shè)與運營的合同
- 2025年度高新技術(shù)公司技術(shù)入股合作協(xié)議3篇
- 2025年度企業(yè)搬遷項目策劃與辦公設(shè)備搬遷服務(wù)合同3篇
- 2025版智能交通信號控制系統(tǒng)合作合同3篇
- 2025年度專業(yè)翻譯公司兼職翻譯人員聘用協(xié)議3篇
- 2025版建筑泥水工勞務(wù)分包與建筑信息化管理系統(tǒng)合同3篇
- 立法學完整版教學課件全套ppt教程
- (優(yōu)選)離散元法及其應(yīng)用課件
- 簡約中國風水墨山水工作總結(jié)通用PPT模板
- 腳手架計算書-
- 部編版八年級語文上冊《句子的成分》定稿課件
- 清華大學《大學物理》習題庫試題及答案09磁學習題
- 目標成本限額指標
- 最易懂的杰普遜航圖學習課件
- 高速公路瀝青路面設(shè)計計算書(Word)
- 加油機拆卸安裝方案
- 國畫美術(shù)興趣小組活動記錄(共9頁)
評論
0/150
提交評論