




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2.1.2
空間中直線與直線之間位置關(guān)系習題課第1頁第1頁問題一:異面直線鑒定第2頁第2頁例1.已知m、n為異面直線,m?平面α,n?平面β,α∩β=l,則l()A.與m、n都相交B.與m、n中至少一條相交C.與m、n都不相交D.與m、n中一條直線相交第3頁第3頁例2.已知點P、Q、R、S分別是正方體四條棱中點,則直線PQ與RS是異面直線一個圖是 ()第4頁第4頁例3.如圖,已知α∩β=a,b?α,c?β,b∩a=A,c∥a,求證:b與c是異面直線.第5頁第5頁[證實]假設(shè)b與c不是異面直線,則b∥c或b與c相交.(1)若b∥c,∵a∥c,∴a∥b與a∩b=A矛盾.(2)若b與c相交,設(shè)b∩c=B,∵a∥c,∴B?a,即A、B兩點不重疊,這樣直線b上有兩點A、B∈β,∴b?β,又b?α,∴b是α與β公共直線,又α∩β=a,∴b與a重疊,這與b∩a=A矛盾,∴b與c是異面直線.第6頁第6頁異面直線證實:(1)反證法,假設(shè)兩直線共面,隨后導出矛盾,故兩直線異面.(2)過平面外一點與平面內(nèi)一點直線和平面內(nèi)但是該點直線是異面直線(異面直線鑒定定理).第7頁第7頁問題二:求異面直線所成角第8頁第8頁預備知識角知識正弦定理a=2RsinAa=2RsinASABC=bcsinA余弦定理ABCbcacosA=ABCbca第9頁第9頁二、數(shù)學思想、辦法、環(huán)節(jié):處理空間角問題涉及數(shù)學思想主要是化歸與轉(zhuǎn)化,即把空間角轉(zhuǎn)化為平面角,進而轉(zhuǎn)化為三角形內(nèi)角,然后通過解三角形求得。2.辦法:3.環(huán)節(jié):求異面直線所成角:①作(找)②證③點④算1.數(shù)學思想:平移結(jié)構(gòu)可解三角形第10頁第10頁例4.在正方體ABCD-A1B1C1D1中,棱長為4(1)求直線BA1和CC1所成角大小(2)若M,N分別為棱A1B1和B1B中點,求直線AM與CN所成角余弦值.A1B1C1D1ABCDMNPQBQ=1BN=2QN=QC=NC=Cos∠QNC=第11頁第11頁
例
5、在正方體ABCD-A’B’C’D’中,棱長為a,E、F分別是棱A’B’,B’C’中點,求:①異面直線AD與EF所成角大??;②異面直線B’C與EF所成角大?。虎郛惷嬷本€B’D與EF所成角大小.第12頁第12頁②異面直線B’C與EF所成角大??;第13頁第13頁OGAC∥A’C’∥EF,OG∥B’DB’D與EF所成角即為AC與OG所成角,即為∠AOG或其補角.平移法補形法第14頁第14頁例6空間四邊形SABC中,SA=SB=SC=AB=BC=CA,E、F分別是SA、BC中點,則異面直線EF與SC所成角900第15頁第15頁S是正△ABC所在平面外一點,SA=SB=SC且∠ASB=∠BSC=∠CSA=90°,M,N分別是AB和SC中點,求異面直線SM與BN所成角。ASBCMNPMABCPNPBaaa例7.第16頁第16頁三例8.第17頁第17頁第18頁第18頁第19頁第19頁例9.如圖,在正三角形ABC中,D、E、F分別為各邊中點,G、H、I、J分別為AF、AD、BE、DE中點,將△ABC沿DE、EF、DF折成三棱錐以后,GH與IJ所成角度數(shù)為________第20頁第20頁[解析]
折起后,空間圖形如圖.A、B、C三點重疊為一點A′,在△BDE中,IJ∥BD,在△ADF中,GH∥DF,∴折起后,IJ∥A′D,∴直線DF與A′D所成角就是HG與IJ所成角,在正△A′DF中,∠A′DF=60°.第21頁第21頁
例、10
由四個全等等邊三角形圍成封閉幾何體稱為正四周體.如圖,正四周體ABCD中,E、F分別是棱BC、AD中點,CF與DE是一對異面直線,在圖形中適當選取一點作出異面直線CF、DE平行線,找出異面直線CF與DE所成角.第22頁第22頁[解析]
思緒1:選取平面ACD,該平面有下列兩個特點:①該平面包括直線CF,②該平面與DE相交于點D,伸展平面ACD,在該平面中,過點D作DM∥CF交AC延長線于M,連結(jié)EM.能夠看出:DE與DM所成角,即為異面直線DE與CF所成角.如圖1.第23頁第23頁思緒2:選取平面BCF,該平面有下列兩個特點:①該平面包括直線CF,②該平面與DE相交于點E.在平面BCF中,過點E作CF平行線交BF于點N,連結(jié)ND,能夠看出:EN與ED所成角,即為異面直線FC與ED所成角.如圖2.思緒3:選取平面ADE,該平面有下列兩個特點:①該平面包括直線DE,②該平面與CF相交于點F.在平面ADE中,過點F作FG∥DE,與AE相交于點G,連結(jié)CG,能夠看出:FG與FC所成角,即為異面直線CF與DE所成角.如圖3.第24頁第24頁第25頁第25頁思緒4:選取平面BCD,該平面有下列特點:①該平面包括直線DE,②該平面與CF相交于點C,伸展平面BCD,在該平面內(nèi)過點C作CK∥DE與BD延長線交于點K,且DK=BD,連結(jié)FK,則CF與CK所成角,即為異面直線CF與DE所成角.如圖4.第26頁第26頁總結(jié)評述:(1)上面四個思緒共同點是:由兩條異面直線中一條與另一條上一個點擬定一個平面,在該平面內(nèi)過該點作該直線平行線,從而找出兩條異面直線所成角,這是立體幾何“化異為共”“降維”基本思想.第27頁第27頁(2)求兩條異面直線所成角關(guān)鍵是作出這兩條異面直線所成角,作兩條異面直線所成角辦法是:將其中一條平移到某個位置使其與另一條相交或是將兩條異面直線同時平移到某個位置使它們相交,然后在同一平面內(nèi)求相交直線所成角.值得注意是:平移后相交所得角必須容易算出,因此平移時要求選擇恰當位置.普通提倡像思緒2、思緒3那樣作角,由于此角在幾何體內(nèi)部,易求.第28頁第28頁(3)找出異面直線所成角后求角大小.普通要歸到一個三角形中,通過解三角形求出角大小,如本題思緒1中可歸結(jié)為解△DEM.思緒2中可歸結(jié)為解△DEN等等,由于本例中三角形是斜三角形,待我們學過解斜三角形后,即可計算.(4)實際問題中,若含有“中點”“百分比點”常利用中位線,百分比線段進行平移.第29頁第29頁10.A為正三角形BCD所在平面外一點,且AB=AC=AD=BC=a,E、F分別是棱AD、BC中點,連結(jié)AF、CE,如圖所表示,求異面直線AF、CE所成角余弦值。
ABCDEFG解:連結(jié)DF,取DF中點G,連結(jié)EG,CG,又E是AD中點,故EG//AF,因此∠GEC(或其補角)是異面直線AF、CE所成角?!喈惷嬷本€AF、CE所成角余弦值是
第30頁第30頁11.A為正三角形BCD所在平面外一點,且AB=AC=AD=BC=a,E、F分別是棱AD、BC中點,連結(jié)AF、CE,如圖所表示,求異面直線AF、CE所成角余弦值。
ABCDEFP另解:延長DC至P,使DC=CP,E為AD中點,∴AP//EC。
故∠PAF(或其補角)為異面直線AF、CE所成角。
∴異面直線AF、CE所成角余弦值是
第31頁第31頁練習1:如圖,P為ΔABC所在平面外一點,PC⊥AB,PC=AB=2,E、F分別為PA和BC中點。
(1)求證:EF與PC為異面直線;(2)求EF與PC所成角;(3)求線段EF長。ABCPEF假設(shè)EF與PC不是異面直線,則EF與PC共面由題意可知其平面為PBC這與已知P為ΔABC所在平面外一點矛盾第32頁第32頁PABCMN12、空間四邊形P-ABC中,M,N分別是PB,AC中點,PA=BC=4,MN=3,求PA與BC所成角?E第33頁第33頁ADCBA1D1C1B1變題:已知正方體ABCD-A1B1C1D1中,棱長為a.O為底面中心,F(xiàn)為DD1中點E在A1B1上,求AF與OE所成角OEFN第34頁第34頁ADCBA1D1C1B12、若M為A1B1中點,N為BB1中點,求異面直線AM與CN所成角;NMFE第35頁第35頁例14、如圖,在三棱錐D-ABC中,
DA⊥平面ABC,∠ACB=90°,∠ABD=30°,AC=BC,求異面直線AB與CD所成角余弦值。ABCD第36頁第36頁四周體A—BCD棱長均為a,E,F(xiàn)分別為棱BC,AD中點,
(1)求異面直線CF和BD所成角余弦值。
(2)求CF與DE所成角。思考題ABCDEFPQ第37頁第37頁異面直線所成角求法:
典例剖析例1:如圖正方體AC1,①求異面直線AB1和CC1所成角大?、谇螽惷嬷本€AB1和A1D所成角大小
D1D1CB1A1ADD1BC1〖分析〗1、做異面直線平行線2、闡明哪個角就是所求角3、把角放到平面圖形中求解
解:①∵CC1//BB1∴AB1和BB1所成銳角是異面直線AB1和CC1所成角
∵在△ABB1中,AB1和BB1所成角是450∴異面直線AB1和CC1所成角是450。第38頁第38頁異面直線所成角求法:
典例剖析例1:如圖正方體AC1,①求異面直線AB1和CC1所成角大小②求異面直線AB1和A1D所成角大小
D1D1CB1A1ADD1BC1〖分析〗1、做異面直線平行線2、闡明哪個角就是所求角3、把角放到平面圖形中求解
②∵在面A1B1CD中,∵A1B1CD∴A1D//B1C∴AB1和B1C所成銳角是異面直線AB1和A1D所成角
∵在△AB1C中,AB1和CC1所成角是600∴異面直線AB1和A1D所成角是600。第39頁第39頁DB1A1D1C1ACBDB1A1D1C1ACBDB1A1D1C1ACB正方體ABCD-A1B1C1D1中,P為BB1中點,如圖畫出下面各題中指定異面直線●P異面直線所成角是銳角或直角,當三角形內(nèi)角是鈍角時,表示異面直線所成角是它補角.第40頁第40頁DB1A1D1C1ACB以第三幅圖為例
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學安全教育與健康計劃
- 橋梁交通安全施工技術(shù)方案
- 2025-2030中國男裝行業(yè)市場發(fā)展分析及發(fā)展前景與投資研究報告
- 2025-2030中國電動自行車市場深度調(diào)研及發(fā)展策略研究報告
- 電力行業(yè)作風建設(shè)整改措施
- 2025-2030中國生豬養(yǎng)殖屠宰行業(yè)市場發(fā)展前瞻及投資戰(zhàn)略研究報告
- 2025-2030中國特色農(nóng)產(chǎn)品行業(yè)發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025-2030中國熟鹵制品行業(yè)市場發(fā)展分析及前景趨勢與投資研究報告
- 互聯(lián)網(wǎng)行業(yè)大數(shù)據(jù)分析與用戶行為研究方案
- 幼兒園教師培訓流程設(shè)計
- 土釘墻、噴錨護坡分包合同
- 工商企業(yè)管理畢業(yè)論文19904
- 2025湖北隨州國資本投資運營集團限公司人員招聘27人易考易錯模擬試題(共500題)試卷后附參考答案
- 2025年許昌電氣職業(yè)學院單招職業(yè)技能測試題庫附答案
- 廢料收購合同協(xié)議模板(簡版)6篇
- 患者隱私保護培訓課件
- 2025年洛陽科技職業(yè)學院單招職業(yè)傾向性測試題庫及答案(歷年真題)
- DBJ50-T-077-2019 建筑施工現(xiàn)場管理標準
- 壓力容器使用安全管理要求和操作規(guī)程
- 2025新人教版七下英語單詞默寫表
- 軍隊系統(tǒng)反腐倡廉心得體會
評論
0/150
提交評論