安徽省肥東中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末質(zhì)量檢測試題含解析_第1頁
安徽省肥東中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末質(zhì)量檢測試題含解析_第2頁
安徽省肥東中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末質(zhì)量檢測試題含解析_第3頁
安徽省肥東中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末質(zhì)量檢測試題含解析_第4頁
安徽省肥東中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.將函數(shù)y=sin2x的圖象向右平移A.在區(qū)間[-πB.在區(qū)間[5πC.在區(qū)間[-πD.在區(qū)間[π2.已知與的夾角為,,,則()A. B. C. D.3.在,內(nèi)角所對的邊分別為,且,則()A. B. C. D.14.若變量滿足約束條件,則的最大值是()A.0 B.2 C.5 D.65..若且,直線不通過()A.第一象限 B.第二象限 C.第三象限 D.第四象限,6.函數(shù)的圖象的一條對稱軸方程是()A. B. C. D.7.的值為()A. B. C. D.8.《九章算術(shù)》中有如下問題:“今有勾五步,股一十二步,問勾中容圓,徑幾何?”其大意:“已知直角三角形兩直角邊長分別為5步和12步,問其內(nèi)切圓的直徑為多少步?”現(xiàn)若向此三角形內(nèi)隨機(jī)投一粒豆子,則豆子落在其內(nèi)切圓外的概率是()A. B. C. D.9.已知直線,與互相垂直,則的值是()A. B.或 C. D.或10.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上的所有的點(diǎn)()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位二、填空題:本大題共6小題,每小題5分,共30分。11.若等差數(shù)列和等比數(shù)列滿足,,則_______.12.已知,,,是球的球面上的四點(diǎn),,,兩兩垂直,,且三棱錐的體積為,則球的表面積為______.13.在平行六面體中,為與的交點(diǎn),若存在實(shí)數(shù),使向量,則__________.14.已知正實(shí)數(shù)x,y滿足2x+y=2,則xy的最大值為______.15.已知等比數(shù)列的公比為,它的前項(xiàng)積為,且滿足,,,給出以下四個命題:①;②;③為的最大值;④使成立的最大的正整數(shù)為4031;則其中正確命題的序號為________16.設(shè),過定點(diǎn)A的動直線和過定點(diǎn)B的動直線交于點(diǎn),則的最大值是.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.隨著高校自主招生活動的持續(xù)開展,我市高中生掀起了參與數(shù)學(xué)興趣小組的熱潮.為調(diào)查我市高中生對數(shù)學(xué)學(xué)習(xí)的喜好程度,從甲、乙兩所高中各自隨機(jī)抽取了40名學(xué)生,記錄他們在一周內(nèi)平均每天學(xué)習(xí)數(shù)學(xué)的時間,并將其分成了6個區(qū)間:、、、、、,整理得到如下頻率分布直方圖:(1)試估計甲高中學(xué)生一周內(nèi)平均每天學(xué)習(xí)數(shù)學(xué)的時間的中位數(shù)甲(精確到0.01);(2)判斷從甲、乙兩所高中各自隨機(jī)抽取的40名學(xué)生一周內(nèi)平均每天學(xué)習(xí)數(shù)學(xué)的時間的平均值甲與乙及方差甲與乙的大小關(guān)系(只需寫出結(jié)論),并計算其中的甲、甲(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).18.如圖,已知在側(cè)棱垂直于底面三棱柱中,,,,,點(diǎn)是的中點(diǎn).(1)求證:;(2)求證:(3)求三棱錐的體積.19.已知無窮數(shù)列,是公差分別為、的等差數(shù)列,記(),其中表示不超過的最大整數(shù),即.(1)直接寫出數(shù)列,的前4項(xiàng),使得數(shù)列的前4項(xiàng)為:2,3,4,5;(2)若,求數(shù)列的前項(xiàng)的和;(3)求證:數(shù)列為等差數(shù)列的必要非充分條件是.20.在中,內(nèi)角,,所對的邊分別為,,.已知.(Ⅰ)求;(Ⅱ)若,,求的值.21.已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個底邊長為、高為的等腰三角形,側(cè)視圖是一個底邊長為、高為的等腰三角形.(1)求該幾何體的體積V;(2)求該幾何體的側(cè)面積S.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】

函數(shù)y=sin2x的圖象向右平移y=sin2kπ-π單調(diào)遞減區(qū)間:2kπ+π2≤2x-π3【詳解】本題考查了正弦型函數(shù)圖象的平移變換以及求正弦型函數(shù)的單調(diào)區(qū)間.2、A【解析】

將等式兩邊平方,利用平面向量數(shù)量積的運(yùn)算律和定義得出關(guān)于的二次方程,解出即可.【詳解】將等式兩邊平方得,,即,整理得,,解得,故選:A.【點(diǎn)睛】本題考查平面向量模的計算,在計算向量模的時候,一般將向量模的等式兩邊平方,利用平面向量數(shù)量積的定義和運(yùn)算律進(jìn)行計算,考查運(yùn)算求解能力,屬于中等題.3、C【解析】

直接利用余弦定理求解.【詳解】由余弦定理得.故選C【點(diǎn)睛】本題主要考查余弦定理解三角形,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.4、C【解析】

由題意作出不等式組所表示的平面區(qū)域,將化為,相當(dāng)于直線的縱截距,由幾何意義可得結(jié)果.【詳解】由題意作出其平面區(qū)域,令,化為,相當(dāng)于直線的縱截距,由圖可知,,解得,,則的最大值是,故選C.【點(diǎn)睛】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.5、D【解析】

因?yàn)榍?,所以,,又直線可化為,斜率為,在軸截距為,因此直線過一二三象限,不過第四象限.故選:D.6、A【解析】

由,得,,故選A.7、B【解析】

直接利用誘導(dǎo)公式結(jié)合特殊角的三角函數(shù)求解即可.【詳解】,故選B.【點(diǎn)睛】本題主要考查誘導(dǎo)公式以及特殊角的三角函數(shù),意在考查對基礎(chǔ)知識的掌握情況,屬于簡單題.8、C【解析】

本題首先可以根據(jù)直角三角形的三邊長求出三角形的內(nèi)切圓半徑,然后分別計算出內(nèi)切圓和三角形的面積,最后通過幾何概型的概率計算公式即可得出答案.【詳解】如圖所示,直角三角形的斜邊長為,設(shè)內(nèi)切圓的半徑為,則,解得.所以內(nèi)切圓的面積為,所以豆子落在內(nèi)切圓外部的概率,故選C.【點(diǎn)睛】本題主要考查“面積型”的幾何概型,屬于中檔題.解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與面積有關(guān)的幾何概型問題關(guān)鍵是計算問題的總面積以及事件的面積;幾何概型問題還有以下幾點(diǎn)容易造成失分,在備考時要高度關(guān)注:(1)不能正確判斷事件是古典概型還是幾何概型導(dǎo)致錯誤;(2)基本事件對應(yīng)的區(qū)域測度把握不準(zhǔn)導(dǎo)致錯誤;(3)利用幾何概型的概率公式時,忽視驗(yàn)證事件是否等可能性導(dǎo)致錯誤.9、B【解析】

根據(jù)直線垂直公式得到答案.【詳解】已知直線,與互相垂直或故答案選B【點(diǎn)睛】本題考查了直線垂直的關(guān)系,意在考查學(xué)生的計算能力.10、D【解析】

把系數(shù)2提取出來,即即可得結(jié)論.【詳解】,因此要把圖象向右平移個單位.故選D.【點(diǎn)睛】本題考查三角函數(shù)的圖象平移變換.要注意平移變換是加減平移單位,即向右平移個單位得圖象的解析式為而不是.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,根據(jù)題中條件求出、的值,進(jìn)而求出和的值,由此可得出的值.【詳解】設(shè)等差數(shù)列的公差和等比數(shù)列的公比分別為和,則,求得,,那么,故答案為.【考點(diǎn)】等差數(shù)列和等比數(shù)列【點(diǎn)睛】等差、等比數(shù)列各有五個基本量,兩組基本公式,而這兩組公式可看作多元方程,利用這些方程可將等差、等比數(shù)列中的運(yùn)算問題轉(zhuǎn)化為解關(guān)于基本量的方程(組)問題,因此可以說數(shù)列中的絕大部分運(yùn)算題可看作方程應(yīng)用題,所以用方程思想解決數(shù)列問題是一種行之有效的方法.12、【解析】

根據(jù)三棱錐的體積可求三棱錐的側(cè)棱長,補(bǔ)體后可求三棱錐外接球的直徑,從而可計算外接球的表面積.【詳解】三棱錐的體積為,故,因?yàn)?,,兩兩垂直,,故可把三棱錐補(bǔ)成正方體,該正方體的體對角線為三棱錐外接球的直徑,又體對角線的長度為,故球的表面積為.填.【點(diǎn)睛】幾何體的外接球、內(nèi)切球問題,關(guān)鍵是球心位置的確定,必要時需把球的半徑放置在可解的幾何圖形中.如果球心的位置不易確定,則可以把該幾何體補(bǔ)成規(guī)則的幾何體,便于球心位置和球的半徑的確定.13、【解析】

在平行六面體中把向量用用表示,再利用待定系數(shù)法,求得.再求解?!驹斀狻咳鐖D所示:因?yàn)?,又因?yàn)?,所以,所?故答案為:【點(diǎn)睛】本題主要考查了空間向量的基本定理,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.14、【解析】

由基本不等式可得,可求出xy的最大值.【詳解】因?yàn)?,所以,故,?dāng)且僅當(dāng)時,取等號.故答案為.【點(diǎn)睛】利用基本不等式求最值必須具備三個條件:①各項(xiàng)都是正數(shù);②和(或積)為定值;③等號取得的條件.15、②③【解析】

利用等比數(shù)列的性質(zhì),可得,得出,進(jìn)而判斷②③④,即可得到答案.【詳解】①中,由等比數(shù)列的公比為,且滿足,,,可得,所以,且所以是錯誤的;②中,由等比數(shù)列的性質(zhì),可得,所以是正確的;③中,由,且,,所以前項(xiàng)之積的最大值為,所以是正確的;④中,,所以正確.綜上可得,正確命題的序號為②③.故答案為:②③.【點(diǎn)睛】本題主要考查了等比數(shù)列的性質(zhì)的應(yīng)用,其中解答中熟記等比數(shù)列的性質(zhì),合理推算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.16、5【解析】試題分析:易得.設(shè),則消去得:,所以點(diǎn)P在以AB為直徑的圓上,,所以,.法二、因?yàn)閮芍本€的斜率互為負(fù)倒數(shù),所以,點(diǎn)P的軌跡是以AB為直徑的圓.以下同法一.【考點(diǎn)定位】1、直線與圓;2、重要不等式.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)甲乙,甲乙,甲=,甲=【解析】

(1)根據(jù)每組小矩形的面積確定中位數(shù)所在區(qū)間,即可求解;(2)根據(jù)直方圖特征即可判定甲乙,甲乙,根據(jù)平均數(shù)和方差的公式分別計算求值.【詳解】(1)由甲高中頻率分布直方圖可得:第一組頻率0.1,第二組頻率0.2,第三組頻率0.3,所以中位數(shù)在第三組,甲;(2)根據(jù)兩個頻率分布直方圖可得:甲乙,甲乙甲=甲=【點(diǎn)睛】此題考查頻率分布直方圖,根據(jù)兩組直方圖特征判斷中位數(shù)和方差的大小關(guān)系,求中位數(shù),平均數(shù)和方差,關(guān)鍵在于熟練掌握相關(guān)數(shù)據(jù)的求法,準(zhǔn)確計算得解.18、(1)見解析;(2)見解析;(3)8.【解析】試題分析:(1)由勾股定理得,由面得到,從而得到面,故;(2)連接交于點(diǎn),則為的中位線,得到∥,從而得到∥面;(3)過作垂足為,面,面積法求,求出三角形的面積,代入體積公式進(jìn)行運(yùn)算.試題解析:(1)證明:在中,由勾股定理得為直角三角形,即.又面,,,面,.(2)證明:設(shè)交于點(diǎn),則為的中點(diǎn),連接,則為的中位線,則在中,∥,又面,則∥面.(3)在中過作垂足為,由面⊥面知,面,.而,,.考點(diǎn):直線與平面平行的判定;棱柱、棱錐、棱臺的體積.19、(1)的前4項(xiàng)為1,2,3,4,的前4項(xiàng)為1,1,1,1;(2);(3)證明見解析【解析】

(1)根據(jù)定義,選擇,的前4項(xiàng),盡量選用整數(shù)計算方便;(2)分別考慮,的前項(xiàng)的規(guī)律,然后根據(jù)計算的運(yùn)算規(guī)律計算;(3)根據(jù)必要不充分條件的推出情況去證明即可.【詳解】(1)由的前4項(xiàng)為:2,3,4,5,選、的前項(xiàng)為正整數(shù):的前4項(xiàng)為1,2,3,4,的前4項(xiàng)為1,1,1,1;(2)將的前項(xiàng)列舉出:;將的前項(xiàng)列舉出:;則;(3)充分性:取,此時,將的前項(xiàng)列舉出:,將前項(xiàng)列出:,此時的前項(xiàng)為:,顯然不是等差數(shù)列,充分性不滿足;必要性:設(shè),,當(dāng)為等差數(shù)列時,因?yàn)椋?,又因?yàn)椋杂校?,且,所以;,,不妨令,則有如下不等式:;當(dāng)時,令,則當(dāng)時,,此時無解;當(dāng)時,令,則當(dāng)時,,此時無解;所以必有:,故:必要性滿足;綜上:數(shù)列為等差數(shù)列的必要非充分條件是【點(diǎn)睛】本題考查數(shù)列的定義以及證明,難度困難.對于充分必要條件的證明,需要對充分性和必要性同時分析,不能取其一分析;新定義的數(shù)列問題,可通過定義先理解定義的含義,然后再分析問題.20、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)根據(jù)正弦定理將邊角轉(zhuǎn)化,結(jié)合三角函數(shù)性質(zhì)即可求得角.(Ⅱ)先根據(jù)余弦定理求得,再由正弦定理求得,利用同角三角函數(shù)關(guān)系式求得,即可求得.即可求得的值.【詳解】(Ⅰ)在中,由正弦定理可得即因?yàn)?所以,即又因?yàn)?可得(Ⅱ)在中,由余弦定理及,,有,故由正弦定理可得因?yàn)?故因此,所以,【點(diǎn)睛】本題考查了正弦定理與余弦定理在解三角形中的應(yīng)用,二倍角公式及正弦和角公式的用法,屬于基礎(chǔ)題.21、(1)1;(2)40+24【解析】

由題設(shè)可知,幾何體是一個高為4的四棱錐,其底面是長、寬分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論