浙江省杭州市杭州七縣市區(qū)2022-2023學(xué)年高考數(shù)學(xué)必刷試卷含解析_第1頁(yè)
浙江省杭州市杭州七縣市區(qū)2022-2023學(xué)年高考數(shù)學(xué)必刷試卷含解析_第2頁(yè)
浙江省杭州市杭州七縣市區(qū)2022-2023學(xué)年高考數(shù)學(xué)必刷試卷含解析_第3頁(yè)
浙江省杭州市杭州七縣市區(qū)2022-2023學(xué)年高考數(shù)學(xué)必刷試卷含解析_第4頁(yè)
浙江省杭州市杭州七縣市區(qū)2022-2023學(xué)年高考數(shù)學(xué)必刷試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某幾何體的三視圖如圖所示,圖中圓的半徑為1,等腰三角形的腰長(zhǎng)為3,則該幾何體表面積為()A. B. C. D.2.已知函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.3.設(shè),,是非零向量.若,則()A. B. C. D.4.世紀(jì)產(chǎn)生了著名的“”猜想:任給一個(gè)正整數(shù),如果是偶數(shù),就將它減半;如果是奇數(shù),則將它乘加,不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,一定可以得到.如圖是驗(yàn)證“”猜想的一個(gè)程序框圖,若輸入正整數(shù)的值為,則輸出的的值是()A. B. C. D.5.已知某批零件的長(zhǎng)度誤差(單位:毫米)服從正態(tài)分布,從中隨機(jī)取一件,其長(zhǎng)度誤差落在區(qū)間(3,6)內(nèi)的概率為()(附:若隨機(jī)變量ξ服從正態(tài)分布,則,.)A.4.56% B.13.59% C.27.18% D.31.74%6.已知集合A,B=,則A∩B=A. B. C. D.7.已知正方體的棱長(zhǎng)為,,,分別是棱,,的中點(diǎn),給出下列四個(gè)命題:①;②直線與直線所成角為;③過(guò),,三點(diǎn)的平面截該正方體所得的截面為六邊形;④三棱錐的體積為.其中,正確命題的個(gè)數(shù)為()A. B. C. D.8.歐拉公式為,(虛數(shù)單位)是由瑞士著名數(shù)學(xué)家歐拉發(fā)現(xiàn)的,它將指數(shù)函數(shù)的定義域擴(kuò)大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,它在復(fù)變函數(shù)論里非常重要,被譽(yù)為“數(shù)學(xué)中的天橋”.根據(jù)歐拉公式可知,表示的復(fù)數(shù)位于復(fù)平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.設(shè)橢圓:的右頂點(diǎn)為A,右焦點(diǎn)為F,B、C為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),直線BF交直線AC于M,且M為AC的中點(diǎn),則橢圓E的離心率是()A. B. C. D.10.已知函數(shù),若,,,則a,b,c的大小關(guān)系是()A. B. C. D.11.已知實(shí)數(shù)集,集合,集合,則()A. B. C. D.12.已知、分別為雙曲線:(,)的左、右焦點(diǎn),過(guò)的直線交于、兩點(diǎn),為坐標(biāo)原點(diǎn),若,,則的離心率為()A.2 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,雙曲線的一條準(zhǔn)線與兩條漸近線所圍成的三角形的面積為______.14.在中,角所對(duì)的邊分別為,為的面積,若,,則的形狀為__________,的大小為__________.15.?dāng)?shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,滿足,,且.若任意,成立,則實(shí)數(shù)的取值范圍為__________.16.一個(gè)空間幾何體的三視圖及部分?jǐn)?shù)據(jù)如圖所示,則這個(gè)幾何體的體積是___________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè),函數(shù).(1)當(dāng)時(shí),求在內(nèi)的極值;(2)設(shè)函數(shù),當(dāng)有兩個(gè)極值點(diǎn)時(shí),總有,求實(shí)數(shù)的值.18.(12分)已知函數(shù).(1)若對(duì)任意x0,f(x)0恒成立,求實(shí)數(shù)a的取值范圍;(2)若函數(shù)f(x)有兩個(gè)不同的零點(diǎn)x1,x2(x1x2),證明:.19.(12分)已知,函數(shù)的最小值為1.(1)證明:.(2)若恒成立,求實(shí)數(shù)的最大值.20.(12分)已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù).).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,曲線與直線其中的一個(gè)交點(diǎn)為,且點(diǎn)極徑.極角(1)求曲線的極坐標(biāo)方程與點(diǎn)的極坐標(biāo);(2)已知直線的直角坐標(biāo)方程為,直線與曲線相交于點(diǎn)(異于原點(diǎn)),求的面積.21.(12分)已知函數(shù),若的解集為.(1)求的值;(2)若正實(shí)數(shù),,滿足,求證:.22.(10分)已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).(1)當(dāng)時(shí),證明:對(duì);(2)若函數(shù)在上存在極值,求實(shí)數(shù)的取值范圍。

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

幾何體是由一個(gè)圓錐和半球組成,其中半球的半徑為1,圓錐的母線長(zhǎng)為3,底面半徑為1,計(jì)算得到答案.【詳解】幾何體是由一個(gè)圓錐和半球組成,其中半球的半徑為1,圓錐的母線長(zhǎng)為3,底面半徑為1,故幾何體的表面積為.故選:.【點(diǎn)睛】本題考查了根據(jù)三視圖求表面積,意在考查學(xué)生的計(jì)算能力和空間想象能力.2、B【解析】

可判斷函數(shù)在上單調(diào)遞增,且,所以.【詳解】在上單調(diào)遞增,且,所以.故選:B【點(diǎn)睛】本題主要考查了函數(shù)單調(diào)性的判定,指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì),利用單調(diào)性比大小等知識(shí),考查了學(xué)生的運(yùn)算求解能力.3、D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點(diǎn):平面向量數(shù)量積.【思路點(diǎn)睛】幾何圖形中向量的數(shù)量積問(wèn)題是近幾年高考的又一熱點(diǎn),作為一類既能考查向量的線性運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及平面幾何知識(shí),又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問(wèn)題,實(shí)有其合理之處.解決此類問(wèn)題的常用方法是:①利用已知條件,結(jié)合平面幾何知識(shí)及向量數(shù)量積的基本概念直接求解(較易);②將條件通過(guò)向量的線性運(yùn)算進(jìn)行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標(biāo)運(yùn)算,此法對(duì)解含垂直關(guān)系的問(wèn)題往往有很好效果.4、C【解析】

列出循環(huán)的每一步,可得出輸出的的值.【詳解】,輸入,,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)不成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,成立,跳出循環(huán),輸出的值為.故選:C.【點(diǎn)睛】本題考查利用程序框圖計(jì)算輸出結(jié)果,考查計(jì)算能力,屬于基礎(chǔ)題.5、B【解析】試題分析:由題意故選B.考點(diǎn):正態(tài)分布6、A【解析】

先解A、B集合,再取交集?!驹斀狻?所以B集合與A集合的交集為,故選A【點(diǎn)睛】一般地,把不等式組放在數(shù)軸中得出解集。7、C【解析】

畫出幾何體的圖形,然后轉(zhuǎn)化判斷四個(gè)命題的真假即可.【詳解】如圖;連接相關(guān)點(diǎn)的線段,為的中點(diǎn),連接,因?yàn)槭侵悬c(diǎn),可知,,可知平面,即可證明,所以①正確;直線與直線所成角就是直線與直線所成角為;正確;過(guò),,三點(diǎn)的平面截該正方體所得的截面為五邊形;如圖:是五邊形.所以③不正確;如圖:三棱錐的體積為:由條件易知F是GM中點(diǎn),所以,而,.所以三棱錐的體積為,④正確;故選:.【點(diǎn)睛】本題考查命題的真假的判斷與應(yīng)用,涉及空間幾何體的體積,直線與平面的位置關(guān)系的應(yīng)用,平面的基本性質(zhì),是中檔題.8、A【解析】

計(jì)算,得到答案.【詳解】根據(jù)題意,故,表示的復(fù)數(shù)在第一象限.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的計(jì)算,意在考查學(xué)生的計(jì)算能力和理解能力.9、C【解析】

連接,為的中位線,從而,且,進(jìn)而,由此能求出橢圓的離心率.【詳解】如圖,連接,橢圓:的右頂點(diǎn)為A,右焦點(diǎn)為F,B、C為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),不妨設(shè)B在第二象限,直線BF交直線AC于M,且M為AC的中點(diǎn)為的中位線,,且,,解得橢圓的離心率.故選:C【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì),考查了運(yùn)算求解能力,屬于基礎(chǔ)題.10、D【解析】

根據(jù)題意,求出函數(shù)的導(dǎo)數(shù),由函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系分析可得在上為增函數(shù),又由,分析可得答案.【詳解】解:根據(jù)題意,函數(shù),其導(dǎo)數(shù)函數(shù),則有在上恒成立,則在上為增函數(shù);又由,則;故選:.【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,涉及函數(shù)單調(diào)性的性質(zhì),屬于基礎(chǔ)題.11、A【解析】

可得集合,求出補(bǔ)集,再求出即可.【詳解】由,得,即,所以,所以.故選:A【點(diǎn)睛】本題考查了集合的補(bǔ)集和交集的混合運(yùn)算,屬于基礎(chǔ)題.12、D【解析】

作出圖象,取AB中點(diǎn)E,連接EF2,設(shè)F1A=x,根據(jù)雙曲線定義可得x=2a,再由勾股定理可得到c2=7a2,進(jìn)而得到e的值【詳解】解:取AB中點(diǎn)E,連接EF2,則由已知可得BF1⊥EF2,F(xiàn)1A=AE=EB,設(shè)F1A=x,則由雙曲線定義可得AF2=2a+x,BF1﹣BF2=3x﹣2a﹣x=2a,所以x=2a,則EF2=2a,由勾股定理可得(4a)2+(2a)2=(2c)2,所以c2=7a2,則e故選:D.【點(diǎn)睛】本題考查雙曲線定義的應(yīng)用,考查離心率的求法,數(shù)形結(jié)合思想,屬于中檔題.對(duì)于圓錐曲線中求離心率的問(wèn)題,關(guān)鍵是列出含有中兩個(gè)量的方程,有時(shí)還要結(jié)合橢圓、雙曲線的定義對(duì)方程進(jìn)行整理,從而求出離心率.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求出雙曲線的漸近線方程,求出準(zhǔn)線方程,求出三角形的頂點(diǎn)的坐標(biāo),然后求解面積.【詳解】解:雙曲線:雙曲線中,,,則雙曲線的一條準(zhǔn)線方程為,雙曲線的漸近線方程為:,可得準(zhǔn)線方程與雙曲線的兩條漸近線所圍成的三角形的頂點(diǎn)的坐標(biāo),,,,則三角形的面積為.故答案為:【點(diǎn)睛】本題考查雙曲線方程的應(yīng)用,雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力,屬于中檔題.14、等腰三角形【解析】∵∴根據(jù)正弦定理可得,即∴∴∴的形狀為等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案為等腰三角形,15、【解析】

當(dāng)時(shí),,可得到,再用累乘法求出,再求出,根據(jù)定義求出,再借助單調(diào)性求解.【詳解】解:當(dāng)時(shí),,則,,當(dāng)時(shí),,,,,,(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),,故答案為:.【點(diǎn)睛】本題主要考查已知求,累乘法,主要考查計(jì)算能力,屬于中檔題.16、【解析】

先還原幾何體,再根據(jù)柱體體積公式求解【詳解】空間幾何體為一個(gè)棱柱,如圖,底面為邊長(zhǎng)為的直角三角形,高為的棱柱,所以體積為【點(diǎn)睛】本題考查三視圖以及柱體體積公式,考查基本分析求解能力,屬基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)極大值是,無(wú)極小值;(2)【解析】

(1)當(dāng)時(shí),可求得,令,利用導(dǎo)數(shù)可判斷的單調(diào)性并得其零點(diǎn),從而可得原函數(shù)的極值點(diǎn)及極大值;(2)表示出,并求得,由題意,得方程有兩個(gè)不同的實(shí)根,,從而可得△及,由,得.則可化為對(duì)任意的恒成立,按照、、三種情況分類討論,分離參數(shù)后轉(zhuǎn)化為求函數(shù)的最值可解決;【詳解】(1)當(dāng)時(shí),.令,則,顯然在上單調(diào)遞減,又因?yàn)?,故時(shí),總有,所以在上單調(diào)遞減.由于,所以當(dāng)時(shí),;當(dāng)時(shí),.當(dāng)變化時(shí),的變化情況如下表:+-增極大減所以在上的極大值是,無(wú)極小值.(2)由于,則.由題意,方程有兩個(gè)不等實(shí)根,則,解得,且,又,所以.由,,可得又.將其代入上式得:.整理得,即當(dāng)時(shí),不等式恒成立,即.當(dāng)時(shí),恒成立,即,令,易證是上的減函數(shù).因此,當(dāng)時(shí),,故.當(dāng)時(shí),恒成立,即,因此,當(dāng)時(shí),所以.綜上所述,.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的最值、研究函數(shù)的極值等知識(shí),考查分類討論思想、轉(zhuǎn)化思想,考查學(xué)生綜合運(yùn)用知識(shí)分析問(wèn)題解決問(wèn)題的能力,該題綜合性強(qiáng),難度大,對(duì)能力要求較高.18、(1);(2)證明見解析.【解析】

(1)求出,判斷函數(shù)的單調(diào)性,求出函數(shù)的最大值,即求的范圍;(2)由(1)可知,.對(duì)分和兩種情況討論,構(gòu)造函數(shù),利用放縮法和基本不等式證明結(jié)論.【詳解】(1)由,得.令.當(dāng)時(shí),;當(dāng)時(shí),;在上單調(diào)遞增,在上單調(diào)遞減,.對(duì)任意恒成立,.(2)證明:由(1)可知,在上單調(diào)遞增,在上單調(diào)遞減,.若,則,令在上單調(diào)遞增,,.又,在上單調(diào)遞減,.若,則顯然成立.綜上,.又以上兩式左右兩端分別相加,得,即,所以.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)解決不等式恒成立問(wèn)題,利用導(dǎo)數(shù)證明不等式,屬于難題.19、(1)2;(2)【解析】分析:(1)將轉(zhuǎn)化為分段函數(shù),求函數(shù)的最小值(2)分離參數(shù),利用基本不等式證明即可.詳解:(Ⅰ)證明:,顯然在上單調(diào)遞減,在上單調(diào)遞增,所以的最小值為,即.(Ⅱ)因?yàn)楹愠闪?,所以恒成立,?dāng)且僅當(dāng)時(shí),取得最小值,所以,即實(shí)數(shù)的最大值為.點(diǎn)睛:本題主要考查含兩個(gè)絕對(duì)值的函數(shù)的最值和不等式的應(yīng)用,第二問(wèn)恒成立問(wèn)題分離參數(shù),利用基本不等式求解很關(guān)鍵,屬于中檔題.20、(1)極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為(2)【解析】

(1)利用極坐標(biāo)方程、普通方程、參數(shù)方程間的互化公式即可;(2)只需算出A、B兩點(diǎn)的極坐標(biāo),利用計(jì)算即可.【詳解】(1)曲線C:(為參數(shù),),將代入,解得,即曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為.(2)由(1),得點(diǎn)的極坐標(biāo)為,由直線過(guò)原點(diǎn)且傾斜角為,知點(diǎn)的極坐標(biāo)為,.【點(diǎn)睛】本題考查極坐標(biāo)方程、普通方程、參數(shù)方程間的互化以及利用極徑求三角形面積,考查學(xué)生的運(yùn)算能力,是一道基礎(chǔ)題.21、(1);(2)證明見詳解.【解析】

(1)將不等式的解集用表示出來(lái),結(jié)合題中的解集,求出的值;(2)利用柯西不等式證明.【詳解】解:(1),,,因?yàn)榈慕饧癁?,所以,;?)由(1)由柯西不等式,當(dāng)且僅當(dāng),,,等號(hào)成立.【點(diǎn)睛】本題考查了絕對(duì)值不等式的解法,利用柯西不等式證明不等式的問(wèn)題,屬于中檔題.22、(1)見證明;(2)【解析】

(1)利

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論